Advertisement

Return to Play Following Cartilage Injuries

  • Renato Andrade
  • Rogério Pereira
  • Ricardo Bastos
  • Hélder Pereira
  • J. Miguel Oliveira
  • Rui L. Reis
  • João Espregueira-MendesEmail author
Chapter

Abstract

Articular cartilage lesions are serious injuries, particularly in the football player, once these may endanger the athlete’s competitive career. Returning to competition at the preinjury sports activity level as fast and as safe as possible is the ultimate goal to be achieved. Although there is no consensus on the best surgical technique, clinical algorithms have been proposed to manage the different articular cartilage defects. Herein, we summarize the available clinical treatment possibilities for addressing focal cartilage defects and osteochondral lesions. We also overview the three rehabilitation phases and the progression of the patient within these plans shall follow objective criteria. The considerations to return to play are also briefly discussed herein.

Keywords

Articular Cartilage Football Rehabilitation Return to play 

Top 5 Evidence-Based References

  1. Andrade R, Vasta S, Papalia R, Pereira H, Oliveira JM, Reis RL et al (2016) Prevalence of articular cartilage lesions and surgical clinical outcomes in football (soccer) players’ knees: a systematic review. Arthroscopy 32:1466–1477PubMedCrossRefGoogle Scholar
  2. Bekkers J, de Windt TS, Brittberg M, Saris D (2012) Cartilage repair in football (soccer) athletes what evidence leads to which treatment? A critical review of the literature. Cartilage 3:43S–49SPubMedPubMedCentralCrossRefGoogle Scholar
  3. Hambly K, Silvers HJ, Steinwachs M (2012) Rehabilitation after articular cartilage repair of the knee in the football (soccer) player. Cartilage 3:50S–56SPubMedPubMedCentralCrossRefGoogle Scholar
  4. Mithoefer K, Della Villa S (2012) Return to sports after articular cartilage repair in the football (soccer) player. Cartilage 3:57S–62SPubMedPubMedCentralCrossRefGoogle Scholar
  5. Reinold MM, Wilk KE, Macrina LC, Dugas JR, Cain EL (2006) Current concepts in the rehabilitation following articular cartilage repair procedures in the knee. J Orthop Sports Phys Ther 36:774–794PubMedCrossRefGoogle Scholar

References

  1. 1.
    Mithoefer K, Peterson L, Saris D, Mandelbaum B, Dvorák J (2012) Special issue on articular cartilage injury in the football (soccer) player. Cartilage 3:4S–5SPubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Andrade R, Vasta S, Papalia R, Pereira H, Oliveira JM, Reis RL et al (2016) Prevalence of articular cartilage lesions and surgical clinical outcomes in football (soccer) players’ knees: a systematic review. Arthroscopy 32:1466–1477PubMedCrossRefGoogle Scholar
  3. 3.
    Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH (2010) Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc 42:1795–1801PubMedCrossRefGoogle Scholar
  4. 4.
    Mithoefer K, Steadman RJ (2012) Microfracture in football (soccer) players a case series of professional athletes and systematic review. Cartilage 3:18S–24SPubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gomoll A, Filardo G, De Girolamo L, Esprequeira-Mendes J, Marcacci M, Rodkey W et al (2012) Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc 20:450–466PubMedCrossRefGoogle Scholar
  6. 6.
    Krych AJ, Robertson CM, Williams RJ (2012) Return to athletic activity after osteochondral allograft transplantation in the knee. Am J Sports Med 40:1053–1059PubMedCrossRefGoogle Scholar
  7. 7.
    Mithoefer K, Della Villa S (2012) Return to sports after articular cartilage repair in the football (soccer) player. Cartilage 3:57S–62SPubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR (2009) Return to sports participation after articular cartilage repair in the knee scientific evidence. Am J Sports Med 37:167S–176SPubMedCrossRefGoogle Scholar
  9. 9.
    Dvorak J, Peterson L, Junge A, Chomiak J, Graf-Baumann T (2000) Incidence of football injuries and complaints in different age groups and skill-level groups. Am J Sports Med 28:51–57CrossRefGoogle Scholar
  10. 10.
    Messner K, Maletius W (1996) The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop 67:165–168CrossRefGoogle Scholar
  11. 11.
    Piasecki DP, Spindler KP, Warren TA, Andrish JT, Parker RD (2003) Intraarticular injuries associated with anterior cruciate ligament tear: findings at ligament reconstruction in high school and recreational athletes. An analysis of sex-based differences. Am J Sports Med 31:601–605PubMedCrossRefGoogle Scholar
  12. 12.
    Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer NCAA data and review of literature. Am J Sports Med 23:694–701PubMedCrossRefGoogle Scholar
  13. 13.
    Heijink A, Gomoll AH, Madry H, Drobnič M, Filardo G, Espregueira-Mendes J et al (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20:423–435PubMedCrossRefGoogle Scholar
  14. 14.
    Vannini F, Spalding T, Andriolo L, Berruto M, Denti M, Espregueira-Mendes J et al (2016) Sport and early osteoarthritis: the role of sport in aetiology, progression and treatment of knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 24:1786–1796PubMedCrossRefGoogle Scholar
  15. 15.
    Engström B, Forssblad M, Johansson C, Tornkvist H (1990) Does a major knee injury definitely sideline an elite soccer player? Am J Sports Med 18:101–105PubMedCrossRefGoogle Scholar
  16. 16.
    Pánics G, Hangody LR, Baló E, Vásárhelyi G, Gál T, Hangody L (2012) Osteochondral autograft and mosaicplasty in the football (soccer) athlete. Cartilage 3:25S–30SPubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Steinwachs M, Engebretsen L, Brophy R (2012) Scientific evidence base for cartilage injury and repair in the athlete. Cartilage 3:11S–17SPubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mithoefer K, Hambly K, Logerstedt D, Ricci M, Silvers H, Villa SD (2012) Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther 42:254–273PubMedCrossRefGoogle Scholar
  19. 19.
    Kiviranta I, Tammi M, Jurvelin J, Arokoski J, Säuäumäunen A-M, Helminen HJ (1992) Articular cartilage thickness and glycosaminoglycan distribution in the canine knee joint after strenuous running exercise. Clin Orthop Relat Res 283:302–308Google Scholar
  20. 20.
    Stefan Lohmander L, Roos H, Dahlberg L, Hoerrner LA, Lark MW (1994) Temporal patterns of stromelysin-1, tissue inhibitor, and proteoglycan fragments in human knee joint fluid after injury to the cruciate ligament or meniscus. J Orthop Res 12:21–28CrossRefGoogle Scholar
  21. 21.
    Buckwalter JA (1998) Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 28:192–202PubMedCrossRefGoogle Scholar
  22. 22.
    Gomoll AH, Minas T (2014) The quality of healing: articular cartilage. Wound Repair Regen 22:30–38PubMedCrossRefGoogle Scholar
  23. 23.
    McAdams TR, Mithoefer K, Scopp JM, Mandelbaum BR (2010) Articular cartilage injury in athletes. Cartilage 1:165–179PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Årøen A, Løken S, Heir S, Alvik E, Ekeland A, Granlund OG et al (2004) Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 32:211–215PubMedCrossRefGoogle Scholar
  25. 25.
    Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13:456–460PubMedCrossRefGoogle Scholar
  26. 26.
    Marcacci M, Kon E, Zaffagnini S, Iacono F, Neri MP, Vascellari A et al (2005) Multiple osteochondral arthroscopic grafting (mosaicplasty) for cartilage defects of the knee: prospective study results at 2-year follow-up. Arthroscopy 21:462–470PubMedCrossRefGoogle Scholar
  27. 27.
    Mithoefer K, Williams RJ, Warren RF, Wickiewicz TL, Marx RG (2006) High-impact athletics after knee articular cartilage repair a prospective evaluation of the microfracture technique. Am J Sports Med 34:1413–1418PubMedCrossRefGoogle Scholar
  28. 28.
  29. 29.
    Hägglund M, Waldén M, Magnusson H, Kristenson K, Bengtsson H, Ekstrand J (2013) Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med 47:738–742PubMedCrossRefGoogle Scholar
  30. 30.
    Drawer S, Fuller C (2001) Propensity for osteoarthritis and lower limb joint pain in retired professional soccer players. Br J Sports Med 35:402–408PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hambly K, Silvers HJ, Steinwachs M (2012) Rehabilitation after articular cartilage repair of the knee in the football (soccer) player. Cartilage 3:50S–56SPubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Verdonk P, Dhollander A, Almqvist K, Verdonk R, Victor J (2015) Treatment of osteochondral lesions in the knee using a cell-free scaffold. Bone Joint J 97:318–323PubMedCrossRefGoogle Scholar
  33. 33.
    Murray IR, Benke MT, Mandelbaum BR (2016) Management of knee articular cartilage injuries in athletes: chondroprotection, chondrofacilitation, and resurfacing. Knee Surg Sports Traumatol Arthrosc 24:1617–1626PubMedCrossRefGoogle Scholar
  34. 34.
    Erggelet C, Mandelbaum BR (2008) Principles of cartilage repair. Springer, New York, NYGoogle Scholar
  35. 35.
    Gorsline RT, Kaeding CC (2005) The use of NSAIDs and nutritional supplements in athletes with osteoarthritis: prevalence, benefits, and consequences. Clin Sports Med 24:71–82PubMedCrossRefGoogle Scholar
  36. 36.
    Clark KL (2007) Nutritional considerations in joint health. Clin Sports Med 26:101–118PubMedCrossRefGoogle Scholar
  37. 37.
    Tamburrino P, Castellacci E (2016) Intra-articular injections of HYADD4-G in male professional soccer players with traumatic or degenerative knee chondropathy. A pilot, prospective study. J Sports Med Phys Fitness 56:1534PubMedGoogle Scholar
  38. 38.
    Papalia R, Zampogna B, Russo F, Vasta S, Tirindelli M, Nobile C et al (2016) Comparing hybrid hyaluronic acid with PRP in end career athletes with degenerative cartilage lesions of the knee. J Biol Regul Homeost Agents 30:17PubMedGoogle Scholar
  39. 39.
    Bekkers J, de Windt TS, Brittberg M, Saris D (2012) Cartilage repair in football (soccer) athletes what evidence leads to which treatment? A critical review of the literature. Cartilage 3:43S–49SPubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Harris JD, Brophy RH, Siston RA, Flanigan DC (2010) Treatment of chondral defects in the athlete's knee. Arthroscopy 26:841–852PubMedCrossRefGoogle Scholar
  41. 41.
    Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz A, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18:1456–1464PubMedCrossRefGoogle Scholar
  42. 42.
    Lee YHD, Suzer F, Thermann H (2014) Autologous matrix-induced chondrogenesis in the knee. A review. Cartilage 5:145–153PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gobbi A, Karnatzikos G, Sankineani SR (2014) One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med 42:648–657PubMedCrossRefGoogle Scholar
  44. 44.
    Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B (2011) One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions results at 2-year follow-up. Cartilage 2:286–299PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Huh SW, Shetty AA, Ahmed S, Lee DH, Kim SJ (2016) Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC). J Clin Orthop Trauma 7:153–156PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shetty AA, Kim SJ, Shetty V, Jang JD, Huh SW, Lee DH (2016) Autologous collagen induced chondrogenesis (ACIC: Shetty–Kim technique)—a matrix based acellular single stage arthroscopic cartilage repair technique. J Clin Orthop Trauma 7:164–169PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Stelzeneder D, Shetty AA, Kim S-J, Trattnig S, Domayer SE, Shetty V et al (2013) Repair tissue quality after arthroscopic autologous collagen-induced chondrogenesis (ACIC) assessed via T2* mapping. Skelet Radiol 42:1657–1664CrossRefGoogle Scholar
  48. 48.
    Farr J, Cole BJ, Sherman S, Karas V (2012) Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg 25:023–030CrossRefGoogle Scholar
  49. 49.
    Farr J, Tabet SK, Margerrison E, Cole BJ (2014) Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage. A 2-year prospective study. Am J Sports Med 42:1417–1425PubMedCrossRefGoogle Scholar
  50. 50.
    Harris JD, Frank RM, McCormick FM, Cole BJ (2014) Minced cartilage techniques. Oper Tech Orthop 24:27–34CrossRefGoogle Scholar
  51. 51.
    Brix M, Kaipel M, Kellner R, Schreiner M, Apprich S, Boszotta H et al (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40:625–632PubMedCrossRefGoogle Scholar
  52. 52.
    Delcogliano M, de Caro F, Scaravella E, Ziveri G, De Biase CF, Marotta D et al (2014) Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 22:1260–1269PubMedGoogle Scholar
  53. 53.
    Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration a pilot clinical trial. Am J Sports Med 39:1180–1190PubMedCrossRefGoogle Scholar
  54. 54.
    Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B et al (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41:693–701PubMedCrossRefGoogle Scholar
  55. 55.
    Hoemann CD, Tran-Khanh N, Chevrier A, Chen G, Lascau-Coman V, Mathieu C et al (2015) Chondroinduction Is the main cartilage repair response to microfracture and microfracture with BST-CarGel results as shown by ICRS-II histological scoring and a novel zonal collagen type scoring method of human clinical biopsy specimens. Am J Sports Med 43:2469–2480PubMedCrossRefGoogle Scholar
  56. 56.
    Méthot S, Changoor A, Tran-Khanh N, Hoemann CD, Stanish WD, Restrepo A et al (2015) Osteochondral biopsy analysis demonstrates that BST-CarGel treatment improves structural and cellular characteristics of cartilage repair tissue compared with microfracture. Cartilage 7:16–28CrossRefGoogle Scholar
  57. 57.
    Shive MS, Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S et al (2015) BST-CarGel® treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage 6:62–72PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J et al (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am 95:1640–1650PubMedCrossRefGoogle Scholar
  59. 59.
    Mithöfer K, Minas T, Peterson L, Yeon H, Micheli LJ (2005) Functional outcome of knee articular cartilage repair in adolescent athletes. Am J Sports Med 33:1147–1153PubMedCrossRefGoogle Scholar
  60. 60.
    Mithöfer K, Peterson L, Mandelbaum BR, Minas T (2005) Articular cartilage repair in soccer players with autologous chondrocyte transplantation functional outcome and return to competition. Am J Sports Med 33:1639–1646PubMedCrossRefGoogle Scholar
  61. 61.
    Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation a long-term follow-up. Am J Sports Med 38:1117–1124PubMedCrossRefGoogle Scholar
  62. 62.
    Blevins FT, Rodrigo JJ, Silliman J (1998) Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics 21:761PubMedGoogle Scholar
  63. 63.
    Mithoefer K, Minas T, Peterson L, Yeon H, Micheli LJ (2005) Functional outcome of knee articular cartilage repair in adolescent athletes. Am J Sports Med 33:1147–1153CrossRefGoogle Scholar
  64. 64.
    Mithoefer K, Peterson L, Mandelbaum BR, Minas T (2005) Articular cartilage repair in soccer players with autologous chondrocyte transplantation functional outcome and return to competition. Am J Sports Med 33:1639–1646CrossRefGoogle Scholar
  65. 65.
    Bedi A, Feeley BT, Williams RJ (2010) Management of articular cartilage defects of the knee. J Bone Joint Surg Am 92:994–1009PubMedCrossRefGoogle Scholar
  66. 66.
    Krych AJ, Gobbi A, Lattermann C, Nakamura N (2016) Articular cartilage solutions for the knee: present challenges and future direction. J ISAKOS 1:93–104CrossRefGoogle Scholar
  67. 67.
    Mithoefer K, Williams RJ, Warren RF, Potter HG, Spock CR, Jones EC et al (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. J Bone Joint Surg Am 87:1911–1920PubMedCrossRefGoogle Scholar
  68. 68.
    Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13:213–221PubMedCrossRefGoogle Scholar
  69. 69.
    Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee an evidence-based systematic analysis. Am J Sports Med 37:2053–2063PubMedCrossRefGoogle Scholar
  70. 70.
    Bae DK, Song SJ, Yoon KH, Heo DB, Kim TJ (2013) Survival analysis of microfracture in the osteoarthritic knee—minimum 10-year follow-up. Arthroscopy 29:244–250PubMedCrossRefGoogle Scholar
  71. 71.
    Solheim E, Hegna J, Inderhaug E, Øyen J, Harlem T, Strand T (2016) Results at 10–14 years after microfracture treatment of articular cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 24:1587–1593PubMedCrossRefGoogle Scholar
  72. 72.
    Carey JL (2012) Fibrocartilage following microfracture is not as robust as native articular cartilage: commentary on an article by Aaron J Krych, MD, et al: activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee. A retrospective comparative study. J Bone Joint Surg Am 94:e80PubMedCrossRefGoogle Scholar
  73. 73.
    Case JM, Scopp JM (2016) Treatment of articular cartilage defects of the knee with microfracture and enhanced microfracture techniques. Sports Med Arthrosc 24:63–68PubMedCrossRefGoogle Scholar
  74. 74.
    Krych AJ, Harnly HW, Rodeo SA, Williams RJ (2012) Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee. J Bone Joint Surg Am 94:971–978PubMedCrossRefGoogle Scholar
  75. 75.
    Koh Y-G, Kwon O-R, Kim Y-S, Choi Y-J, Tak D-H (2016) Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy 32:97–109PubMedCrossRefGoogle Scholar
  76. 76.
    Sofu H, Kockara N, Oner A, Camurcu Y, Issın A, Sahin V (2016) Results of hyaluronic acid-based cell-free scaffold application in combination with microfracture for the treatment of osteochondral lesions of the knee: 2-year comparative study. Arthroscopy 33:209–216PubMedCrossRefGoogle Scholar
  77. 77.
    Andrade R, Vasta S, Pereira R, Pereira H, Papalia R, Karahan M et al (2016) Knee donor-site morbidity after mosaicplasty – a systematic review. J Exp Orthop 3:31PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Espregueira-Mendes J, Pereira H, Sevivas N, Varanda P, Da Silva MV, Monteiro A et al (2012) Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surg Sports Traumatol Arthrosc 20:1136–1142PubMedCrossRefGoogle Scholar
  79. 79.
    De Caro F, Bisicchia S, Amendola A, Ding L (2015) Large fresh osteochondral allografts of the knee: a systematic clinical and basic science review of the literature. Arthroscopy 31:757–765PubMedCrossRefGoogle Scholar
  80. 80.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895PubMedCrossRefGoogle Scholar
  81. 81.
    Roberts S, McCall IW, Darby AJ, Menage J, Evans H, Harrison PE et al (2002) Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther 5:1Google Scholar
  82. 82.
    Henderson I, Lavigne P, Valenzuela H, Oakes B (2007) Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res 455:253–261PubMedCrossRefGoogle Scholar
  83. 83.
    Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. J Bone Joint Surg Am 85:185–192PubMedCrossRefGoogle Scholar
  84. 84.
    Tom Minas M, Arvind VKM, Bryant T, Gomoll AH (2014) The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 472:41PubMedCrossRefGoogle Scholar
  85. 85.
    Bartlett W, Gooding C, Carrington R, Skinner J, Briggs T, Bentley G (2005) Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. Bone Joint J 87:330–332CrossRefGoogle Scholar
  86. 86.
    Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B (2015) Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc 23:3729–3735PubMedCrossRefGoogle Scholar
  87. 87.
    Ebert JR, Fallon M, Wood DJ, Janes GC (2017) A prospective clinical and radiological evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte implantation. Am J Sports Med 45:59PubMedCrossRefGoogle Scholar
  88. 88.
    Meyerkort D, Ebert JR, Ackland TR, Robertson WB, Fallon M, Zheng M et al (2014) Matrix-induced autologous chondrocyte implantation (MACI) for chondral defects in the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 22:2522–2530PubMedCrossRefGoogle Scholar
  89. 89.
    Bekkers JE, Inklaar M, Saris DB (2009) Treatment selection in articular cartilage lesions of the knee. A systematic review. Am J Sports Med 37:148S–155SPubMedCrossRefGoogle Scholar
  90. 90.
    Cole BJ, Pascual-Garrido C, Grumet RC (2009) Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am 91:1778–1790PubMedGoogle Scholar
  91. 91.
    de Windt TS, Saris DB (2014) Treatment algorithm for articular cartilage repair of the knee: towards patient profiling using evidence-based tools. In: Shetty A, Kim SJ, Nakamura N, Brittberg M (eds) Techniques in cartilage repair surgery. Springer, New York, NY, pp 23–31CrossRefGoogle Scholar
  92. 92.
    Gomoll AH, Farr J, Gillogly SD, Kercher J, Minas T (2010) Surgical management of articular cartilage defects of the knee. J Bone Joint Surg Am 92:2470–2490PubMedGoogle Scholar
  93. 93.
    Tetteh ES, Bajaj S, Ghodadra NS, Cole BJ (2012) The basic science and surgical treatment options for articular cartilage injuries of the knee. J Orthop Sports Phys Ther 42:243–253PubMedCrossRefGoogle Scholar
  94. 94.
    Della Villa S, Boldrini L, Ricci M, Danelon F, Snyder-Mackler L, Nanni G et al (2012) Clinical outcomes and return-to-sports participation of 50 soccer players after anterior cruciate ligament reconstruction through a sport-specific rehabilitation protocol. Sports Health 4:17–24PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Brophy RH, Zeltser D, Wright RW, Flanigan D (2010) Anterior cruciate ligament reconstruction and concomitant articular cartilage injury: incidence and treatment. Arthroscopy 26:112–120PubMedCrossRefGoogle Scholar
  96. 96.
    Indelicato P, Bittar E (1985) A perspective of lesions associated with ACL insufficiency of the knee. A review of 100 cases. Clin Orthop Relat Res 198:77–80Google Scholar
  97. 97.
    Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB, Erggelet C et al (1998) Articular cartilage lesions of the knee. Am J Sports Med 26:853–861PubMedCrossRefGoogle Scholar
  98. 98.
    Noyes FR, Bassett R, Grood E, Butler D (1980) Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries. J Bone Joint Surg Am 62:687–695PubMedCrossRefGoogle Scholar
  99. 99.
    Shelbourne KD, Jari S, Gray T (2003) Outcome of untreated traumatic articular cartilage defects of the knee. J Bone Joint Surg Am 85:8–16PubMedCrossRefGoogle Scholar
  100. 100.
    Widuchowski W, Widuchowski J, Koczy B, Szyluk K (2009) Untreated asymptomatic deep cartilage lesions associated with anterior cruciate ligament injury results at 10-and 15-year follow-up. Am J Sports Med 37:688–692PubMedCrossRefGoogle Scholar
  101. 101.
    Mithoefer K, Peterson L, Saris DB, Mandelbaum BR (2012) Evolution and current role of autologous chondrocyte implantation for treatment of articular cartilage defects in the football (soccer) player. Cartilage 3:31S–36SPubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Alford JW, Lewis P, Kang RW, Cole BJ (2005) Rapid progression of chondral disease in the lateral compartment of the knee following meniscectomy. Arthroscopy 21:1505–1509PubMedCrossRefGoogle Scholar
  103. 103.
    Mariani PP, Garofalo R, Margheritini F (2008) Chondrolysis after partial lateral meniscectomy in athletes. Knee Surg Sports Traumatol Arthrosc 16:574–580PubMedCrossRefGoogle Scholar
  104. 104.
    Stone JY, Schaal R (2012) Postoperative management of patients with articular cartilage repair. J Knee Surg 25:207–212PubMedCrossRefGoogle Scholar
  105. 105.
    Della Villa S, Kon E, Filardo G, Ricci M, Vincentelli F, Delcogliano M et al (2010) Does intensive rehabilitation permit early return to sport without compromising the clinical outcome after arthroscopic autologous chondrocyte implantation in highly competitive athletes? Am J Sports Med 38:68–77PubMedCrossRefGoogle Scholar
  106. 106.
    Hambly K, Bobic V, Wondrasch B, Van Assche D, Marlovits S (2006) Autologous chondrocyte implantation postoperative care and rehabilitation science and practice. Am J Sports Med 34:1020–1038PubMedCrossRefGoogle Scholar
  107. 107.
    Howard JS, Mattacola CG, Romine SE, Lattermann C (2010) Continuous passive motion, early weight bearing, and active motion following knee articular cartilage repair evidence for clinical practice. Cartilage 1:276–286PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jakobsen RB, Engebretsen L, Slauterbeck JR (2005) An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am 87:2232–2239PubMedGoogle Scholar
  109. 109.
    Reinold MM, Wilk KE, Macrina LC, Dugas JR, Cain EL (2006) Current concepts in the rehabilitation following articular cartilage repair procedures in the knee. J Orthop Sports Phys Ther 36:774–794PubMedCrossRefGoogle Scholar
  110. 110.
    Shapiro F, Koide S, Glimcher M (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75:532–553PubMedCrossRefGoogle Scholar
  111. 111.
    Shortkroff S, Barone L, Hsu H-P, Wrenn C, Gagne T, Chi T et al (1996) Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials 17:147–154PubMedCrossRefGoogle Scholar
  112. 112.
    Ebert J, Robertson W, Lloyd DG, Zheng M, Wood D, Ackland T (2008) Traditional vs accelerated approaches to post-operative rehabilitation following matrix-induced autologous chondrocyte implantation (MACI): comparison of clinical, biomechanical and radiographic outcomes. Osteoarthr Cartil 16:1131–1140PubMedCrossRefGoogle Scholar
  113. 113.
    Wondrasch B, Risberg M-A, Zak L, Marlovits S, Aldrian S (2015) Effect of accelerated weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle a prospective, randomized controlled study presenting MRI-based and clinical outcomes after 5 years. Am J Sports Med 43:146–153PubMedCrossRefGoogle Scholar
  114. 114.
    Thornley P, Niroopan G, Khan M, McCarthy C, Simunovic N, Adamich J et al (2016) No difference in outcome between early versus delayed weight-bearing following microfracture surgery of the hip, knee or ankle: a systematic review of outcomes and complications. J ISAKOS 1:2–9CrossRefGoogle Scholar
  115. 115.
    Arokoski J, Jurvelin J, Väätäinen U, Helminen H (2000) Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports 10:186–198PubMedCrossRefGoogle Scholar
  116. 116.
    Hinterwimmer S, Krammer M, Krötz M, Glaser C, Baumgart R, Reiser M et al (2004) Cartilage atrophy in the knees of patients after seven weeks of partial load bearing. Arthritis Rheum 50:2516–2520PubMedCrossRefGoogle Scholar
  117. 117.
    Lane Smith R, Trindade M, Ikenoue T, Mohtai M, Das P, Carter D et al (2000) Effects of shear stress on articular chondrocyte metabolism. Biorheology 37:95–107PubMedGoogle Scholar
  118. 118.
    Mouritzen U, Christgau S, Lehmann H, Tanko L, Christiansen C (2003) Cartilage turnover assessed with a newly developed assay measuring collagen type II degradation products: influence of age, sex, menopause, hormone replacement therapy, and body mass index. Ann Rheum Dis 62:332–336PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Stoddart MJ, Ettinger L, Häuselmann HJ (2006) Enhanced matrix synthesis in de novo, scaffold free cartilage-like tissue subjected to compression and shear. Biotechnol Bioeng 95:1043–1051PubMedCrossRefGoogle Scholar
  120. 120.
    Lorenz DS, Reiman MP (2011) Performance enhancement in the terminal phases of rehabilitation. Sports Health 3:470–480PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Binnie MJ, Dawson B, Arnot MA, Pinnington H, Landers G, Peeling P (2014) Effect of sand versus grass training surfaces during an 8-week pre-season conditioning programme in team sport athletes. J Sports Sci 32:1001–1012PubMedCrossRefGoogle Scholar
  122. 122.
    Binnie MJ, Dawson B, Pinnington H, Landers G, Peeling P (2013) Part 2: effect of training surface on acute physiological responses after sport-specific training. J Strength Cond Res 27:1057–1066PubMedCrossRefGoogle Scholar
  123. 123.
    Binnie MJ, Dawson B, Pinnington H, Landers G, Peeling P (2014) Sand training: a review of current research and practical applications. J Sports Sci 32:8–15PubMedCrossRefGoogle Scholar
  124. 124.
    Binnie MJ, Peeling P, Pinnington H, Landers G, Dawson B (2013) Effect of surface-specific training on 20-m sprint performance on sand and grass surfaces. J Strength Cond Res 27:3515–3520PubMedCrossRefGoogle Scholar
  125. 125.
    Gaudino P, Gaudino C, Alberti G, Minetti AE (2013) Biomechanics and predicted energetics of sprinting on sand: hints for soccer training. J Sci Med Sport 16:271–275PubMedCrossRefGoogle Scholar
  126. 126.
    Rago V, Rebelo A, Pizzuto F, Barreira D (2016) Small-sided football games on sand are more physical-demanding but less technical-specific compared to artificial turf. J Sports Med Phys Fitness PMID:27627990Google Scholar
  127. 127.
    Bartlett J, O'Connor F, Pitchford N, Torres-Ronda L, Robertson S (2016) Relationships between internal and external training load in team sport athletes: evidence for an individualised approach. Int J Sports Physiol Perform.  https://doi.org/10.1123/ijspp.2016-0300
  128. 128.
    Mara JK, Thompson KG, Pumpa KL, Ball NB (2015) Periodization and physical performance in elite female soccer players. Int J Sports Physiol Perform 10:664–669PubMedCrossRefGoogle Scholar
  129. 129.
    Reid LC, Cowman JR, Green BS, Coughlan GF (2013) Return to play in elite rugby union: application of global positioning system technology in return-to-running programs. J Sport Rehabil 22:122–129PubMedCrossRefGoogle Scholar
  130. 130.
    Ritchie D, Hopkins WG, Buchheit M, Cordy J, Bartlett JD (2016) Quantification of training load during return to play following upper and lower body injury in Australian rules football. Int J Sports Physiol Perform.  https://doi.org/10.1123/ijspp.2016-0300
  131. 131.
    Shrier I, Clarsen B, Verhagen E, Gordon K, Mellette J (2017) Improving the accuracy of sports medicine surveillance: when is a subsequent event a new injury? Br J Sports Med 51:26–28PubMedCrossRefGoogle Scholar
  132. 132.
    Blanch P, Gabbett TJ (2016) Has the athlete trained enough to return to play safely? The acute: chronic workload ratio permits clinicians to quantify a player's risk of subsequent injury. Br J Sports Med 50:471–475PubMedCrossRefGoogle Scholar
  133. 133.
    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA (2016) Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 50:804–808PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Nagelli CV, Hewett TE (2017) Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports Med 47(2):221–232PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Edwards PK, Ackland T, Ebert JR (2014) Clinical rehabilitation guidelines for matrix-induced autologous chondrocyte implantation on the tibiofemoral joint. J Orthop Sports Phys Ther 44:102–119PubMedCrossRefGoogle Scholar
  136. 136.
    Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E (2016) Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med 50:946–951PubMedCrossRefGoogle Scholar
  137. 137.
    Brittberg M, Aglietti P, Gambardella R, Hangody L, Hauselmann H, Jakob R, et al. (2000) ICRS cartilage injury evaluation package. Paper presented at proceedings of 3rd ICRS meeting, Göteborg, SwedenGoogle Scholar
  138. 138.
    Makhni EC, Meyer MA, Saltzman BM, Cole BJ (2016) Comprehensiveness of outcome reporting in studies of articular cartilage defects of the knee. Arthroscopy 32:2133–2139PubMedCrossRefGoogle Scholar
  139. 139.
    George SZ, Lentz TA, Zeppieri G Jr, Lee D, Chmielewski TL (2012) Analysis of shortened versions of the Tampa Scale for Kinesiophobia and Pain Catastrophizing Scale for patients following anterior cruciate ligament reconstruction. Clin J Pain 28:73PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Glazer DD (2009) Development and preliminary validation of the Injury-Psychological Readiness to Return to Sport (I-PRRS) Scale. J Athl Train 44:185–189PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Hambly K, Griva K (2008) IKDC or KOOS? Which measures symptoms and disabilities most important to postoperative articular cartilage repair patients? Am J Sports Med 36:1695–1704PubMedCrossRefGoogle Scholar
  142. 142.
    Kanakamedala AC, Anderson AF, Irrgang JJ (2016) IKDC Subjective Knee Form and Marx Activity Rating Scale are suitable to evaluate all orthopaedic sports medicine knee conditions: a systematic review. J ISAKOS 1:25–31CrossRefGoogle Scholar
  143. 143.
    Mithoefer K, Acuna M (2013) Clinical outcomes assessment for articular cartilage restoration. J Knee Surg 26:31–40PubMedCrossRefGoogle Scholar
  144. 144.
    Thomeé P, Währborg P, Börjesson M, Thomeé R, Eriksson BI, Karlsson J (2006) A new instrument for measuring self-efficacy in patients with an anterior cruciate ligament injury. Scand J Med Sci Sports 16:181–187PubMedCrossRefGoogle Scholar
  145. 145.
    Thomeé P, Währborg P, Börjesson M, Thomeé R, Eriksson BI, Karlsson J (2010) A randomized, controlled study of a rehabilitation model to improve knee-function self-efficacy with ACL injury. J Sport Rehabil 19:200PubMedCrossRefGoogle Scholar
  146. 146.
    Ardern CL, Bizzini M, Bahr R (2016) It is time for consensus on return to play after injury: five key questions. Br J Sports Med 50:506–508PubMedCrossRefGoogle Scholar
  147. 147.
    Bizzini M, Silvers HJ (2014) Return to competitive football after major knee surgery: more questions than answers? J Sports Sci 32:1209–1216PubMedCrossRefGoogle Scholar
  148. 148.
    Elwyn G, Frosch D, Thomson R, Joseph-Williams N, Lloyd A, Kinnersley P et al (2012) Shared decision making: a model for clinical practice. J Gen Intern Med 27:1361–1367PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Shrier I, Safai P, Charland L (2013) Return to play following injury: whose decision should it be? Br J Sports Med 48:394–401PubMedCrossRefGoogle Scholar
  150. 150.
    Ardern CL, Glasgow P, Schneiders A, Witvrouw E, Clarsen B, Cools A et al (2016) 2016 Consensus statement on return to sport from the first world congress in sports physical therapy, Bern. Br J Sports Med 50:853–864PubMedCrossRefGoogle Scholar
  151. 151.
    Ardern CL, Khan KM (2015) The old knee in the young athlete: knowns and unknowns in the return-to-play conversation. Br J Sports Med 50:505–506PubMedCrossRefGoogle Scholar
  152. 152.
    Grindem H, Risberg M, Eitzen I (2015) Two factors that may underpin outstanding outcomes after ACL rehabilitation. Br J Sports Med 49:1425–1425PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    McCall A, Lewin C, O’driscoll G, Witvrouw E, Ardern C (2016) Return to play: the challenge of balancing research and practice. Br J Sports Med.  https://doi.org/10.1136/bjsports-2016-096752
  154. 154.
    Shrier I (2015) Strategic assessment of risk and risk tolerance (StARRT) framework for return-to-play decision-making. Br J Sports Med 49:1311–1315PubMedCrossRefGoogle Scholar
  155. 155.
    Ardern CL, Kvist J, Webster KE (2016) Psychological aspects of anterior cruciate ligament injuries. Oper Tech Sports Med 24:77–83CrossRefGoogle Scholar
  156. 156.
    Ayers DC, Franklin PD, Ring DC (2013) The role of emotional health in functional outcomes after orthopaedic surgery: extending the biopsychosocial model to orthopaedics. J Bone Joint Surg Am 95:e165PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Wiese-Bjornstal DM, Smith AM, Shaffer SM, Morrey MA (1998) An integrated model of response to sport injury: Psychological and sociological dynamics. J Appl Sport Psychol 10:46–69CrossRefGoogle Scholar
  158. 158.
    Campbell AB, Pineda M, Harris JD, Flanigan DC (2016) Return to sport after articular cartilage repair in athletes’ knees: a systematic review. Arthroscopy 32:651–668PubMedCrossRefGoogle Scholar
  159. 159.
    Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams RJ (2016) Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc.  https://doi.org/10.1007/s00167-016-4262-3
  160. 160.
    Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S et al (2011) Articular cartilage treatment in high-level male soccer players a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med 39:2549–2557PubMedCrossRefGoogle Scholar

Copyright information

© ESSKA 2018

Authors and Affiliations

  • Renato Andrade
    • 1
    • 2
    • 3
  • Rogério Pereira
    • 1
    • 2
    • 3
    • 4
  • Ricardo Bastos
    • 1
    • 2
    • 5
  • Hélder Pereira
    • 2
    • 6
    • 7
    • 8
    • 9
  • J. Miguel Oliveira
    • 6
    • 7
    • 8
  • Rui L. Reis
    • 6
    • 7
  • João Espregueira-Mendes
    • 1
    • 2
    • 6
    • 7
    • 10
    Email author
  1. 1.Clínica do DragãoEspregueira-Mendes Sports Centre – FIFA Medical Centre of ExcellencePortoPortugal
  2. 2.Dom Henrique Research CentrePortoPortugal
  3. 3.Faculty of SportsUniversity of PortoPortoPortugal
  4. 4.Faculty of Health ScienceUniversity Fernando PessoaPortoPortugal
  5. 5.Universidade Federal FluminenseNirteói, Rio de JaneiroBrazil
  6. 6.3B’s Research Group – Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco, GuimarãesPortugal
  7. 7.ICVS/3B’s – PT Government Associate LaboratoryBraga/GuimarãesPortugal
  8. 8.Ripoll y De Prado Sports Clinic – FIFA Medical Centre of ExcellenceMurcia-MadridSpain
  9. 9.Orthopedic Department Centro Hospitalar Póvoa de VarzimVila do CondePortugal
  10. 10.Department of OrthopaedicMinho UniversityBragaPortugal

Personalised recommendations