Advertisement

Return to Play in Stress Fractures of the Hip, Thigh, Knee, and Leg

  • Hélder PereiraEmail author
  • Duarte Sousa
  • Pieter d’Hooghe
  • Sérgio Gomes
  • Joaquim Miguel Oliveira
  • Rui L. Reis
  • João Espregueira-Mendes
  • Pedro L. Ripoll
  • Kenneth Hunt
Chapter

Abstract

A stress fracture results from abnormal loading or inadequate recovery time following repeated loadings on bony structures. Stress fractures occur after an increase in frequency, duration, or intensity of exercise creating imbalance between bone resorption and formation, most frequently affecting athletes and young people. Both intrinsic and extrinsic risk factors have been established. An estimated 90% of stress fractures in athletes and footballers affect the lower limb, with the tibia being the second most frequent injury site followed by the pelvis. Clinical history and physical examination are critical for early diagnosis and optimal treatment. Plain radiographs have low sensitivity and are often inadequate to detect this condition. The most frequent imaging exam is currently MRI, which has good sensitivity and specificity. Conservative treatment is an appropriate and effective treatment in most cases. High-risk fractures (e.g., involving high tension sites or hypovascular zones) often require surgical treatment to facilitate healing and reduce risk of refracture. Location of the fracture, characteristics of the fracture and the athlete, and the level of competition must be taken into account during treatment decision-making. There are no perfect imaging techniques nor clear clinical evidence-based guidelines concerning return to play. However, as a “golden rule,” the athlete should be symptom-free for 2–3 weeks before returning to the pitch. The fact that lower extremity stress fractures are relatively rare conditions creates increased difficulty in determining the effectiveness of treatments, particularly newer treatment options. This chapter provides a comprehensive management approach to stress fractures of the lower limb, with the exception of foot and ankle stress fractures, including the most updated information concerning optimal treatment and return to play.

Keywords

Bone Footballers MRI Pelvis Return to play Risk factors Stress fracture Tibia 

Top Five Evidence Based References

  1. Dhillon MS et al (2016) Stress fractures in football. J ISAKOS Joint Disord Orthopaedic Sports Med 1(4):229–238CrossRefGoogle Scholar
  2. Ekstrand J, Torstveit MK (2012) Stress fractures in elite male football players. Scand J Med Sci Sports 22:341–346PubMedCrossRefGoogle Scholar
  3. Sundgot-Borgen J, Torstveit MK (2007) The female football player, disordered eating, menstrual function and bone health. Br J Sports Med 41(Suppl 1):i68–i72PubMedCentralPubMedCrossRefGoogle Scholar
  4. Wright AA et al (2016) Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med 44(1):255–263PubMedCrossRefGoogle Scholar
  5. Changstrom BG et al (2015) Epidemiology of stress fracture injuries among US high school athletes, 2005-2006 through 2012-2013. Am J Sports Med 43(1):26–33PubMedCrossRefGoogle Scholar

References

  1. 1.
    Dhillon MS, Ekstrand J, Mann G, Sharma S (2016) Stress fractures in football. J ISAKOS Joint Disord Orthopaed Sports Med 1:229–238CrossRefGoogle Scholar
  2. 2.
    Mann G, Constantini N, Nyska M, Dolev E, Barchilon V, Shabat S et al (2012) Stress fractures: overview. In: Doral MN, Tandoğan RN, Mann G, Verdonk R (eds) Sports injuries. Springer, Berlin, pp 787–813CrossRefGoogle Scholar
  3. 3.
    Stechow AW (1897) Fussödem und Röntgenstrahlen. Deutsche Militärärztliche Zeitschrift 26:465Google Scholar
  4. 4.
    Milgrom C, Giladi M, Stein M, Kashtan H, Margulies JY, Chisin R et al (1985) Stress fractures in military recruits. A prospective study showing an unusually high incidence. J Bone Joint Surg Br 67:732–735PubMedCrossRefGoogle Scholar
  5. 5.
    Valimaki VV, Alfthan H, Lehmuskallio E, Loyttyniemi E, Sahi T, Suominen H et al (2005) Risk factors for clinical stress fractures in male military recruits: a prospective cohort study. Bone 37:267–273PubMedCrossRefGoogle Scholar
  6. 6.
    Changstrom BG, Brou L, Khodaee M, Braund C, Comstock RD (2015) Epidemiology of stress fracture injuries among US high school athletes, 2005-2006 through 2012-2013. Am J Sports Med 43:26–33PubMedCrossRefGoogle Scholar
  7. 7.
    Chen YT, Tenforde AS, Fredericson M (2013) Update on stress fractures in female athletes: epidemiology, treatment, and prevention. Curr Rev Musculoskelet Med 6:173–181PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG (1987) Stress fractures in athletes. A study of 320 cases. Am J Sports Med 15:46–58PubMedCrossRefGoogle Scholar
  9. 9.
    Fredericson M, Jennings F, Beaulieu C, Matheson GO (2006) Stress fractures in athletes. Top Magn Reson Imaging 17:309–325PubMedCrossRefGoogle Scholar
  10. 10.
    Fredericson M, Jennings F, Beaulieu C, Matheson GO (2006) Stress fractures in athletes. Top Magn Reson Imaging 17:309–325PubMedCrossRefGoogle Scholar
  11. 11.
    Pegrum J, Crisp T, Padhiar N (2012) Diagnosis and management of bone stress injuries of the lower limb in athletes. BMJ 344:e2511PubMedCrossRefGoogle Scholar
  12. 12.
    Berger FH, de Jonge MC, Maas M (2007) Stress fractures in the lower extremity. The importance of increasing awareness amongst radiologists. Eur J Radiol 62:16–26PubMedCrossRefGoogle Scholar
  13. 13.
    Csizy M, Babst R, Fridrich KS (2000) Fehldiagnose “Knochentumor” bei Stressfraktur am medialen Tibiaplateau. Unfallchirurg 103:993–995PubMedCrossRefGoogle Scholar
  14. 14.
    Edwards PH Jr, Wright ML, Hartman JF (2005) A practical approach for the differential diagnosis of chronic leg pain in the athlete. Am J Sports Med 33:1241–1249PubMedCrossRefGoogle Scholar
  15. 15.
    Wall J, Feller JF (2006) Imaging of stress fractures in runners. Clin Sports Med 25:781–802PubMedCrossRefGoogle Scholar
  16. 16.
    Lee BJ, Kim TY (2016) A study on the birth and globalization of sports originated from each continent. J Exerc Rehabil 12:2–9PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ekstrand J, Hagglund M, Walden M (2011) Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med 45:553–558PubMedCrossRefGoogle Scholar
  18. 18.
    Timpka T, Ekstrand J, Svanstrom L (2006) From sports injury prevention to safety promotion in sports. Sports Med 36:733–745PubMedCrossRefGoogle Scholar
  19. 19.
    Ekstrand J, Torstveit MK (2012) Stress fractures in elite male football players. Scand J Med Sci Sports 22:341–346PubMedCrossRefGoogle Scholar
  20. 20.
    Ekstrand J, van Dijk CN (2013) Fifth metatarsal fractures among male professional footballers: a potential career-ending disease. Br J Sports Med 47:754–758PubMedCrossRefGoogle Scholar
  21. 21.
    Sundgot-Borgen J, Torstveit MK (2007) The female football player, disordered eating, menstrual function and bone health. Br J Sports Med 41(Suppl 1):i68–i72PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Torstveit MK, Sundgot-Borgen J (2005) The female athlete triad: are elite athletes at increased risk? Med Sci Sports Exerc 37:184–193PubMedCrossRefGoogle Scholar
  23. 23.
    Walden M, Hagglund M, Ekstrand J (2005) UEFA Champions League study: a prospective study of injuries in professional football during the 2001-2002 season. Br J Sports Med 39:542–546PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Warden SJ, Creaby MW, Bryant AL, Crossley KM (2007) Stress fracture risk factors in female football players and their clinical implications. Br J Sports Med 41(Suppl 1):i38–i43PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Daffner RH, Pavlov H (1992) Stress fractures: current concepts. AJR Am J Roentgenol 159:245–252PubMedCrossRefGoogle Scholar
  26. 26.
    Lesho EP (1997) Can tuning forks replace bone scans for identification of tibial stress fractures? Mil Med 162:802–803PubMedCrossRefGoogle Scholar
  27. 27.
    Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J Biomech 5:173–180PubMedCrossRefGoogle Scholar
  28. 28.
    Kaeding CC, Miller T (2013) The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg Am 95:1214–1220PubMedCrossRefGoogle Scholar
  29. 29.
    Bennell KL, Malcolm SA, Wark JD, Brukner PD (1996) Models for the pathogenesis of stress fractures in athletes. Br J Sports Med 30:200–204PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Krestan C, Hojreh A (2009) Imaging of insufficiency fractures. Eur J Radiol 71:398–405PubMedCrossRefGoogle Scholar
  31. 31.
    Harrast MA, Colonno D (2010) Stress fractures in runners. Clin Sports Med 29:399–416PubMedCrossRefGoogle Scholar
  32. 32.
    Kaeding CC, Spindler KP, Amendola A (2004) Management of troublesome stress fractures. Instr Course Lect 53:455–469PubMedGoogle Scholar
  33. 33.
    Matcuk GR Jr, Mahanty SR, Skalski MR, Patel DB, White EA, Gottsegen CJ (2016) Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options. Emerg Radiol 23:365–375PubMedCrossRefGoogle Scholar
  34. 34.
    Pepper M, Akuthota V, McCarty EC (2006) The pathophysiology of stress fractures. Clin Sports Med 25(1-16):viiGoogle Scholar
  35. 35.
    Gilchrist J, Jones BH, Sleet DA, Kimsey CD (2000) Exercise-related injuries among women: strategies for prevention from civilian and military studies. MMWR Recom Rep 49:15–33Google Scholar
  36. 36.
    Kaeding CC, Najarian RG (2010) Stress fractures: classification and management. Phys Sportsmed 38:45–54PubMedCrossRefGoogle Scholar
  37. 37.
    Miller TL, Kaeding CC (2012) Upper-extremity stress fractures: distribution and causative activities in 70 patients. Orthopedics 35:789–793PubMedCrossRefGoogle Scholar
  38. 38.
    Kahanov L, Eberman LE, Games KE, Wasik M (2015) Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners. Open Access J Sports Med 6:87–95PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Gardner L Jr, Dziados JE, Jones BH, Brundage JF, Harris JM, Sullivan R et al (1988) Prevention of lower extremity stress fractures: a controlled trial of a shock absorbent insole. Am J Public Health 78:1563–1567PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Korpelainen R, Orava S, Karpakka J, Siira P, Hulkko A (2001) Risk factors for recurrent stress fractures in athletes. Am J Sports Med 29:304–310PubMedCrossRefGoogle Scholar
  41. 41.
    Tenforde AS, Sayres LC, McCurdy ML, Sainani KL, Fredericson M (2013) Identifying sex-specific risk factors for stress fractures in adolescent runners. Med Sci Sports Exerc 45:1843–1851PubMedCrossRefGoogle Scholar
  42. 42.
    Warden SJ, Burr DB, Brukner PD (2006) Stress fractures: pathophysiology, epidemiology, and risk factors. Curr Osteoporos Rep 4:103–109PubMedCrossRefGoogle Scholar
  43. 43.
    Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD (1996) The incidence and distribution of stress fractures in competitive track and field athletes. A twelve-month prospective study. Am J Sports Med 24:211–217PubMedCrossRefGoogle Scholar
  44. 44.
    Bell DG, Jacobs I (1986) Electro-mechanical response times and rate of force development in males and females. Med Sci Sports Exerc 18:31–36Google Scholar
  45. 45.
    Miller GJ, Purkey WW Jr (1980) The geometric properties of paired human tibiae. J Biomech 13:1–8PubMedCrossRefGoogle Scholar
  46. 46.
    Liem BC, Truswell HJ, Harrast MA (2013) Rehabilitation and return to running after lower limb stress fractures. Curr Sports Med Rep 12:200–207PubMedCrossRefGoogle Scholar
  47. 47.
    Muthukumar T, Butt SH, Cassar-Pullicino VN (2005) Stress fractures and related disorders in foot and ankle: plain films, scintigraphy, CT, and MR Imaging. Semin Musculoskelet Radiol 9:210–226PubMedCrossRefGoogle Scholar
  48. 48.
    Hoffman JR et al (1999) The effect of leg strength on the incidence of lower extremity overuse injuries during military training. Mil Med 164(2): p. 153–156Google Scholar
  49. 49.
    Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D et al (2013) Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc 45:186–205PubMedCrossRefGoogle Scholar
  50. 50.
    Madigan DJ, Stoeber J, Passfield L (2017) Perfectionism and training distress in junior athletes: a longitudinal investigation. J Sports Sci 35(5): p. 470–475Google Scholar
  51. 51.
    Behrens SB, Deren ME, Matson A, Fadale PD, Monchik KO (2013) Stress fractures of the pelvis and legs in athletes: a review. Sports Health 5:165–174PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Bennell K, Crossley K, Jayarajan J, Walton E, Warden S, Kiss ZS et al (2004) Ground reaction forces and bone parameters in females with tibial stress fracture. Med Sci Sports Exerc 36:397–404PubMedCrossRefGoogle Scholar
  53. 53.
    Boden BP, Osbahr DC (2000) High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg 8:344–353PubMedCrossRefGoogle Scholar
  54. 54.
    McInnis KC, Ramey LN (2016) High-risk stress fractures: diagnosis and management. PM R 8:S113–S124PubMedCrossRefGoogle Scholar
  55. 55.
    Browne GJ, Barnett P (2016) Common sports-related musculoskeletal injuries presenting to the emergency department. J Paediatr Child Health 52:231–236PubMedCrossRefGoogle Scholar
  56. 56.
    Kiuru MJ, Pihlajamaki HK, Ahovuo JA (2004) Bone stress injuries. Acta Radiol 45:317–326PubMedCrossRefGoogle Scholar
  57. 57.
    Boden BP, Osbahr DC, Jimenez C (2001) Low-risk stress fractures. Am J Sports Med 29:100–111PubMedCrossRefGoogle Scholar
  58. 58.
    Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM (2016) Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med 44:255–263PubMedCrossRefGoogle Scholar
  59. 59.
    Roub LW, Gumerman LW, Hanley EN Jr, Clark MW, Goodman M, Herbert DL (1979) Bone stress: a radionuclide imaging perspective. Radiology 132:431–438PubMedCrossRefGoogle Scholar
  60. 60.
    Bryant LR, Song WS, Banks KP, Bui-Mansfield LT, Bradley YC (2008) Comparison of planar scintigraphy alone and with SPECT for the initial evaluation of femoral neck stress fracture. AJR Am J Roentgenol 191:1010–1015PubMedCrossRefGoogle Scholar
  61. 61.
    Nachtrab O, Cassar-Pullicino VN, Lalam R, Tins B, Tyrrell PN, Singh J (2012) Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures. Eur J Radiol 81:3813–3823PubMedCrossRefGoogle Scholar
  62. 62.
    Swischuk LE, Jadhav SP (2014) Tibial stress phenomena and fractures: imaging evaluation. Emerg Radiol 21:173–177PubMedCrossRefGoogle Scholar
  63. 63.
    Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Bruschetta D et al (2005) CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology 235:553–561PubMedCrossRefGoogle Scholar
  64. 64.
    Arendt EA, Griffiths HJ (1997) The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med 16:291–306PubMedCrossRefGoogle Scholar
  65. 65.
    Fredericson M, Bergman AG, Hoffman KL, Dillingham MS (1995) Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 23:472–481PubMedCrossRefGoogle Scholar
  66. 66.
    Fredericson M, Bergman AG, Hoffman KL, Dillingham MS (1995) Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 23:472–481PubMedCrossRefGoogle Scholar
  67. 67.
    Saxena A, Fullem B, Hannaford D (2000) Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg 39:96–103PubMedCrossRefGoogle Scholar
  68. 68.
    Torg JS, Balduini FC, Zelko RR, Pavlov H, Peff TC, Das M (1984) Fractures of the base of the fifth metatarsal distal to the tuberosity. Classification and guidelines for non-surgical and surgical management. J Bone Joint Surg Am 66:209–214PubMedCrossRefGoogle Scholar
  69. 69.
    Bertolini FM, Vieira RB, Oliveira LH, Lasmar RP, Junior Ode O (2011) Pubis stress fracture in a 15-year-old soccer player. Rev Bras Ortop 46:464–467PubMedCrossRefGoogle Scholar
  70. 70.
    Johnson AW, Weiss CB Jr, Stento K, Wheeler DL (2001) Stress fractures of the sacrum. An atypical cause of low back pain in the female athlete. Am J Sports Med 29:498–508PubMedCrossRefGoogle Scholar
  71. 71.
    Longhino V, Bonora C, Sansone V (2011) The management of sacral stress fractures: current concepts. Clin Cases Miner Bone Metab 8:19–23PubMedCentralPubMedGoogle Scholar
  72. 72.
    Shah MK, Stewart GW (2002) Sacral stress fractures: an unusual cause of low back pain in an athlete. Spine (Phila Pa 1976) 27:E104–E108CrossRefGoogle Scholar
  73. 73.
    Liong SY, Whitehouse RW (2012) Lower extremity and pelvic stress fractures in athletes. Br J Radiol 85:1148–1156PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Niva MH, Kiuru MJ, Haataja R, Pihlajamaki HK (2005) Fatigue injuries of the femur. J Bone Joint Surg Br 87:1385–1390PubMedCrossRefGoogle Scholar
  75. 75.
    Kiuru MJ, Pihlajamaki HK, Ahovuo JA (2003) Fatigue stress injuries of the pelvic bones and proximal femur: evaluation with MR imaging. Eur Radiol 13:605–611PubMedGoogle Scholar
  76. 76.
    Carpintero P, Leon F, Zafra M, Serrano-Trenas JA, Roman M (2003) Stress fractures of the femoral neck and coxa vara. Arch Orthop Trauma Surg 123:273–277PubMedCrossRefGoogle Scholar
  77. 77.
    Goolsby MA, Barrack MT, Nattiv A (2012) A displaced femoral neck stress fracture in an amenorrheic adolescent female runner. Sports Health 4:352–356PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    DeFranco MJ, Recht M, Schils J, Parker RD (2006) Stress fractures of the femur in athletes. Clin Sports Med 25:89–103. ixPubMedCrossRefGoogle Scholar
  79. 79.
    Koenig SJ, Toth AP, Bosco JA (2008) Stress fractures and stress reactions of the diaphyseal femur in collegiate athletes: an analysis of 25 cases. Am J Orthop (Belle Mead NJ) 37:476–480Google Scholar
  80. 80.
    Ivkovic A, Bojanic I, Pecina M (2006) Stress fractures of the femoral shaft in athletes: a new treatment algorithm. Br J Sports Med 40:518–520. discussion 520PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Raasch WG, Hergan DJ (2006) Treatment of stress fractures: the fundamentals. Clin Sports Med 25:29–36. viiPubMedCrossRefGoogle Scholar
  82. 82.
    Johnson AW, Weiss CB Jr, Wheeler DL (1994) Stress fractures of the femoral shaft in athletes--more common than expected. A new clinical test. Am J Sports Med 22:248–256PubMedCrossRefGoogle Scholar
  83. 83.
    Royer M, Thomas T, Cesini J, Legrand E (2012) Stress fractures in 2011: practical approach. Joint Bone Spine 79(Suppl 2):S86–S90PubMedCrossRefGoogle Scholar
  84. 84.
    Salminen ST, Pihlajamaki HK, Visuri TI, Bostman OM (2003) Displaced fatigue fractures of the femoral shaft. Clin Orthop Relat Res:250–259.  https://doi.org/10.1097/01.blo.0000058883.03274.17
  85. 85.
    Caesar BC, McCollum GA, Elliot R, Williams A, Calder JD (2013) Stress fractures of the tibia and medial malleolus. Foot Ankle Clin 18:339–355PubMedCrossRefGoogle Scholar
  86. 86.
    Craig DI (2009) Current developments concerning medial tibial stress syndrome. Phys Sportsmed 37:39–44PubMedCrossRefGoogle Scholar
  87. 87.
    Moen MH, Tol JL, Weir A, Steunebrink M, De Winter TC (2009) Medial tibial stress syndrome: a critical review. Sports Med 39:523–546PubMedCrossRefGoogle Scholar
  88. 88.
    Tweed JL, Avil SJ, Campbell JA, Barnes MR (2008) Etiologic factors in the development of medial tibial stress syndrome: a review of the literature. J Am Podiatr Med Assoc 98:107–111PubMedCrossRefGoogle Scholar
  89. 89.
    Toney CM, Games KE, Winkelmann ZK, Eberman LE (2016) Using tuning-fork tests in diagnosing fractures. J Athl Train 51:498–499PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Liimatainen E, Sarimo J, Hulkko A, Ranne J, Heikkila J, Orava S (2009) Anterior mid-tibial stress fractures. Results of surgical treatment. Scand J Surg 98:244–249PubMedCrossRefGoogle Scholar
  91. 91.
    Knobloch K, Schreibmueller L, Jagodzinski M, Zeichen J, Krettek C (2007) Rapid rehabilitation programme following sacral stress fracture in a long-distance running female athlete. Arch Orthop Trauma Surg 127:809–813PubMedCrossRefGoogle Scholar
  92. 92.
    Saxena A, Granot A (2011) Use of an anti-gravity treadmill in the rehabilitation of the operated achilles tendon: a pilot study. J Foot Ankle Surg 50:558–561PubMedCrossRefGoogle Scholar
  93. 93.
    Tenforde AS, Watanabe LM, Moreno TJ, Fredericson M (2012) Use of an antigravity treadmill for rehabilitation of a pelvic stress injury. PM R 4:629–631PubMedCrossRefGoogle Scholar
  94. 94.
    Westcott WL (2012) Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep 11:209–216PubMedCrossRefGoogle Scholar
  95. 95.
    Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ et al (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41:687–708CrossRefGoogle Scholar
  96. 96.
    Feldman JJ, Bowman EN, Phillips BB, Weinlein JC (2016) Tibial Stress Fractures in Athletes. Orthop Clin North Am 47:733–741PubMedCrossRefGoogle Scholar
  97. 97.
    Tenforde AS, Kraus E, Fredericson M (2016) Bone Stress Injuries in Runners. Phys Med Rehabil Clin N Am 27:139–149PubMedCrossRefGoogle Scholar
  98. 98.
    Kijowski R, Choi J, Shinki K, Del Rio AM, De Smet A (2012) Validation of MRI classification system for tibial stress injuries. AJR Am J Roentgenol 198:878–884PubMedCrossRefGoogle Scholar
  99. 99.
    McCormick F, Nwachukwu BU, Provencher MT (2012) Stress fractures in runners. Clin Sports Med 31:291–306PubMedCrossRefGoogle Scholar
  100. 100.
    Borens O, Sen MK, Huang RC, Richmond J, Kloen P, Jupiter JB et al (2006) Anterior tension band plating for anterior tibial stress fractures in high-performance female athletes: a report of 4 cases. J Orthop Trauma 20:425–430PubMedCrossRefGoogle Scholar
  101. 101.
    Reshef N, Guelich DR (2012) Medial Tibial Stress Syndrome. Clin Sports Med 31:273–290PubMedCrossRefGoogle Scholar
  102. 102.
    Goh JC, Mech AM, Lee EH, Ang EJ, Bayon P, Pho RW (1992) Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Clin Orthop Relat Res:223–228Google Scholar
  103. 103.
    Snyder RA, Koester MC, Dunn WR (2006) Epidemiology of stress fractures. Clin Sports Med 25:37–52. viiiPubMedCrossRefGoogle Scholar
  104. 104.
    Hetsroni I, Mann G (2009) Fibula stress fractures: a treatment review. Oper Tech Sports Med 17:112–114CrossRefGoogle Scholar
  105. 105.
    Hoglund LT, Silbernagel KG, Taweel NR (2015) Distal fibular stress fracture in a female recreational runner: a case report with musculoskeletal ultrasound imaging findings. Int J Sports Phys Ther 10:1050–1058PubMedCentralPubMedGoogle Scholar
  106. 106.
    DiFiori JP (1999) Stress fracture of the proximal fibula in a young soccer player: a case report and a review of the literature. Med Sci Sports Exerc 31:925–928PubMedCrossRefGoogle Scholar
  107. 107.
    Crane TP, Spalding T (2009) The management of patella stress fractures and the symptomatic bipartite patella. Oper Tech Sports Med 17:100–105CrossRefGoogle Scholar
  108. 108.
    Zaffagnini S, Dejour D, Grassi A, Bonanzinga T, Marcheggiani Muccioli GM, Colle F et al (2013) Patellofemoral anatomy and biomechanics: current concepts. Joints 1:15–20PubMedCentralPubMedGoogle Scholar
  109. 109.
    Nelson FR, Brighton CT, Ryaby J, Simon BJ, Nielson JH, Lorich DG et al (2003) Use of physical forces in bone healing. J Am Acad Orthop Surg 11:344–354PubMedCrossRefGoogle Scholar
  110. 110.
    Wu D, Malda J, Crawford R, Xiao Y (2007) Effects of hyperbaric oxygen on proliferation and differentiation of osteoblasts from human alveolar bone. Connect Tissue Res 48:206–213PubMedCrossRefGoogle Scholar
  111. 111.
    Bennett MH, Stanford R, Turner R (2005) Hyperbaric oxygen therapy for promoting fracture healing and treating fracture non-union. Cochrane Database Syst Rev:CD004712.  https://doi.org/10.1002/14651858.CD004712.pub2
  112. 112.
    Stewart GW, Brunet ME, Manning MR, Davis FA (2005) Treatment of stress fractures in athletes with intravenous pamidronate. Clin J Sport Med 15:92–94PubMedCrossRefGoogle Scholar
  113. 113.
    Ekenman I (2009) Do not use bisphosphonates without scientific evidence, neither in treatment nor prophylactic, in the treatment of stress fractures. Knee Surg Sports Traumatol Arthrosc 17:433–434PubMedCrossRefGoogle Scholar
  114. 114.
    Shima Y, Engebretsen L, Iwasa J, Kitaoka K, Tomita K (2009) Use of bisphosphonates for the treatment of stress fractures in athletes. Knee Surg Sports Traumatol Arthrosc 17:542–550PubMedCrossRefGoogle Scholar
  115. 115.
    Engebretsen L, Steffen K, Alsousou J, Anitua E, Bachl N, Devilee R et al (2010) IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br J Sports Med 44:1072–1081PubMedCrossRefGoogle Scholar
  116. 116.
    Pereira H, Ripoll L, Oliveira JM, Reis RL, Espregueira-Mendes J, van Dijk C (2016) A Engenharia de tecidos nas lesões do Desporto. In: Pessoa P, Jones H (eds) Traumatologia desportiva. LIDEL, Lisboa, pp 320–335Google Scholar
  117. 117.
    Sanchez M, Anitua E, Cugat R, Azofra J, Guadilla J, Seijas R et al (2009) Nonunions treated with autologous preparation rich in growth factors. J Orthop Trauma 23:52–59PubMedCrossRefGoogle Scholar
  118. 118.
    Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241PubMedCrossRefGoogle Scholar
  119. 119.
    Giannoudis PV, Gudipati S, Harwood P, Kanakaris NK (2015) Long bone non-unions treated with the diamond concept: a case series of 64 patients. Injury 46(Suppl 8):S48–S54PubMedCrossRefGoogle Scholar
  120. 120.
    Warden SJ, Komatsu DE, Rydberg J, Bond JL, Hassett SM (2009) Recombinant human parathyroid hormone (PTH 1-34) and low-intensity pulsed ultrasound have contrasting additive effects during fracture healing. Bone 44:485–494PubMedCrossRefGoogle Scholar
  121. 121.
    Barnes GL, Kakar S, Vora S, Morgan EF, Gerstenfeld LC, Einhorn TA (2008) Stimulation of fracture-healing with systemic intermittent parathyroid hormone treatment. J Bone Joint Surg Am 90(Suppl 1):120–127PubMedCrossRefGoogle Scholar
  122. 122.
    Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF (1994) Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 76:26–34PubMedCrossRefGoogle Scholar
  123. 123.
    Astur DC, Zanatta F, Arliani GG, Moraes ER, Pochini Ade C, Ejnisman B (2016) Stress fractures: definition, diagnosis and treatment. Rev Bras Ortop 51:3–10PubMedCrossRefGoogle Scholar
  124. 124.
    Busse JW, Kaur J, Mollon B, Bhandari M, Tornetta P III, Schunemann HJ et al (2009) Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials. BMJ 338:b351PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Beck BR, Matheson GO, Bergman G, Norling T, Fredericson M, Hoffman AR et al (2008) Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am J Sports Med 36:545–553PubMedCrossRefGoogle Scholar
  126. 126.
    Holmes GB Jr (1994) Treatment of delayed unions and nonunions of the proximal fifth metatarsal with pulsed electromagnetic fields. Foot Ankle Int 15:552–556PubMedCrossRefGoogle Scholar
  127. 127.
    Simonis RB, Parnell EJ, Ray PS, Peacock JL (2003) Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury 34:357–362PubMedCrossRefGoogle Scholar
  128. 128.
    Carmont RC, Mei-Dan O, Bennell LK (2009) Stress fracture management: current classification and new healing modalities. Oper Tech Sports Med 17:81–89CrossRefGoogle Scholar

Copyright information

© ESSKA 2018

Authors and Affiliations

  • Hélder Pereira
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    Email author
  • Duarte Sousa
    • 3
  • Pieter d’Hooghe
    • 7
  • Sérgio Gomes
    • 5
    • 8
  • Joaquim Miguel Oliveira
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Rui L. Reis
    • 1
    • 2
  • João Espregueira-Mendes
    • 9
    • 10
    • 11
    • 12
  • Pedro L. Ripoll
    • 4
  • Kenneth Hunt
    • 13
  1. 1.3B’s Research Group–Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da GandraBarcoPortugal
  2. 2.ICVS/3B’s–PT Government Associate LaboratoryBragaPortugal
  3. 3.Orthopedic DepartmentCentro Hospitalar Póvoa de VarzimVila do CondePortugal
  4. 4.Ripoll y De Prado Sports Clinic—FIFA Medical Centre of ExcellenceMurciaSpain
  5. 5.International Sports Traumatology Centre of Ave, Taipas TermalCaldas das TaipasPortugal
  6. 6.Dom Henrique Research CentrePortoPortugal
  7. 7.Department of Orthopaedic SurgeryASPETAR Orthopaedic and Sports Medicine HospitalDohaQatar
  8. 8.Clínica do DragãoEspregueira-Mendes Sports Centre—FIFA Medical Centre of ExcellencePortoPortugal
  9. 9.Dom Henrique Research CentrePortoPortugal
  10. 10.3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da GandraBarcoPortugal
  11. 11.ICVS/3B’s–PT Government Associate LaboratoryBragaPortugal
  12. 12.Department of OrthopaedicMinho UniversityBragaPortugal
  13. 13.Department of Orthopaedic SurgeryUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations