Justification Logic with Approximate Conditional Probabilities

  • Zoran Ognjanović
  • Nenad Savić
  • Thomas Studer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10455)


The importance of logics with approximate conditional probabilities is reflected by the fact that they can model non-monotonic reasoning. We introduce a new logic of this kind, \(\mathsf {CPJ}\), which extends justification logic and supports non-monotonic reasoning with and about evidences.


  1. 1.
    Artemov, S.N.: Explicit provability and constructive semantics. BSL 7(1), 1–36 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Artemov, S.N.: The logic of justification. RSL 1(4), 477–513 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Baltag, A., Renne, B., Smets, S.: The logic of justified belief, explicit knowledge, and conclusive evidence. APAL 165(1), 49–81 (2014)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. Appl. Non Class. Log. 21(1), 35–60 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bucheli, S., Kuznets, R., Studer, T.: Realizing public announcements by justifications. J. Comput. Syst. Sci. 80(6), 1046–1066 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41(2), 340–367 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ikodinović, N., Rašković, M., Marković, Z., Ognjanović, Z.: A first-order probabilistic logic with approximate conditional probabilities. Log. J. IGPL 22(4), 539–564 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kokkinis, I.: The Complexity of non-iterated probabilistic justification logic. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 292–310. Springer, Cham (2016). doi: 10.1007/978-3-319-30024-5_16 CrossRefGoogle Scholar
  9. 9.
    Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards probabilistic justification logic. Log. J. IGPL 23(4), 662–687 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kokkinis, I., Ognjanović, Z., Studer, T.: Probabilistic justification logic. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 174–186. Springer, Cham (2016). doi: 10.1007/978-3-319-27683-0_13 CrossRefGoogle Scholar
  11. 11.
    Kraus, S., Lehmann, D.J., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kuznets, R., Studer, T.: Update as evidence: belief expansion. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 266–279. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-35722-0_19 CrossRefGoogle Scholar
  13. 13.
    Lehmann, D.J., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55(1), 1–60 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Milnikel, R.S.: The logic of uncertain justifications. APAL 165(1), 305–315 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Nilsson, N.: Probabilistic logic. Artif. Intell. 28, 7187 (1986)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ognjanović, Z., Rašković, M.: Some probability logics with new types of probability operators. J. Log. Comput. 9(2), 181–195 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics. Springer, Heidelberg (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Rašković, M., Marković, Z., Ognjanović, Z.: A logic with approximate conditional probabilities that can model default reasoning. Int. J. Approx. Reason. 49(1), 52–66 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zoran Ognjanović
    • 1
  • Nenad Savić
    • 2
  • Thomas Studer
    • 2
  1. 1.Mathematical Institute SANUBelgradeSerbia
  2. 2.Institute of Computer ScienceUniversity of BernBernSwitzerland

Personalised recommendations