Advertisement

Reason to Believe

  • Chenwei Shi
  • Olivier Roy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10455)

Abstract

In this paper we study the relation between nonmonotonic reasoning and belief revision. Our main conceptual contribution is to suggest that nonmonotonic reasoning guides but does not determine an agent’s belief revision. To be adopted as beliefs, defeasible conclusions should remain stable in the face of certain bodies of information. This proposal is formalized in what we call a two-tier semantics for nonmonotonic reasoning and belief revision. The main technical result is a sound and complete axiomatization for this semantic.

References

  1. 1.
    Aucher, G.: A combined system for update logic and belief revision. Master’s thesis, ILLC, University of Amsterdam (2003)Google Scholar
  2. 2.
    Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. Texts Log. Games 3, 9–58 (2008)MathSciNetMATHGoogle Scholar
  3. 3.
    Boutilier, C.: Conditional logics of normality: a modal approach. Artif. Intell. 68, 87–154 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Boutilier, C.: Unifying default reasoning and belief revision in a modal framework. Artif. Intell. 68, 33–85 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT press, Cambridge (2004)MATHGoogle Scholar
  6. 6.
    Gärdenfors, P.: Belief revision and nonmonotonic logic: two sides of the same coin? In: Logics in AI, pp. 52–54 (1991)Google Scholar
  7. 7.
    Gärdenfors, P. (ed.): Belief Revision, vol. 29. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  8. 8.
    Gilbert, H.: Change in View. MIT Press, Cambridge (1986)Google Scholar
  9. 9.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1), 167–207 (1990)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Leitgeb, H.: The stability theory of belief. Philos. Rev. 123(2), 131–171 (2014)CrossRefGoogle Scholar
  11. 11.
    Lin, H., Kelly, K.T.: Propositional reasoning that tracks probabilistic reasoning. J. Philos. Log. 41(6), 957–981 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Makinson, D.: Five faces of minimality. Stud. Log. 52(3), 339–379 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Rott, H.: Stability, strength and sensitivity: converting belief into knowledge. Erkenntnis 61(2–3), 469–493 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, pp. 105–134. Springer, Netherlands (1988)CrossRefGoogle Scholar
  15. 15.
    Van Ditmarsch, H.P.: Prolegomena to dynamic logic for belief revision. In: van der Hoek, W. (ed.) Uncertainty, Rationality, and Agency, pp. 175–221. Springer, Netherlands (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.ILLCUniversity of AmsterdamAmsterdamthe Netherlands
  2. 2.Universität BayreuthBayreuthGermany

Personalised recommendations