Advertisement

A Logical Framework for Graded Predicates

  • Petr Cintula
  • Carles Noguera
  • Nicholas J. J. Smith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10455)

Abstract

In this position paper we present a logical framework for modelling reasoning with graded predicates. We distinguish several types of graded predicates and discuss their ubiquity in rational interaction and the logical challenges they pose. We present mathematical fuzzy logic as a set of logical tools that can be used to model reasoning with graded predicates, and discuss a philosophical account of vagueness that makes use of these tools. This approach is then generalized to other kinds of graded predicates. Finally, we propose a general research program towards a logic-based account of reasoning with graded predicates.

Keywords

Graded predicates Vagueness Mathematical fuzzy logic 

Notes

Acknowledgments

Petr Cintula and Carles Noguera are supported by the project GA17-04630S of the Czech Science Foundation (GAČR); both authors have also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 689176 (SYSMICS project). Petr Cintula also acknowledges the support of RVO 67985807. Nicholas Smith is supported by the SOPHI Research Support Scheme at the University of Sydney.

References

  1. 1.
    Běhounek, L.: In which sense is fuzzy logic a logic for vagueness? In: Lukasiewicz, T., Peñaloza, R., Turhan, A.Y. (eds.) Proceedings of the First Workshop on Logics for Reasoning about Preferences, Uncertainty, and Vagueness (PRUV 2014), Vienna, pp. 26–39 (2014)Google Scholar
  2. 2.
    Běhounek, L., Cintula, P.: Fuzzy logics as the logics of chains. Fuzzy Sets Syst. 157(5), 604–610 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blok, W.J., Pigozzi, D.L.: Algebraizable Logics, Memoirs of the American Mathematical Society, vol. 396. American Mathematical Society, Providence (1989). http://orion.math.iastate.edu/dpigozzi/
  4. 4.
    Casari, E.: Comparative logics and Abelian \(\ell \)-groups. In: Logic Colloquium 1988, Padova. Studies in Logic and the Foundations of Mathematics, vol. 127, pp. 161–190. North-Holland, Amsterdam (1989)Google Scholar
  5. 5.
    Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft. Comput. 4(2), 106–112 (2000)CrossRefGoogle Scholar
  6. 6.
    Cintula, P., Fermüller, C.G., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic (in three volumes). Studies in Logic, Mathematical Logic and Foundations, vols. 37, 38, and 58. College Publications (2011, 2015)Google Scholar
  7. 7.
    Cintula, P., Horčík, R., Noguera, C.: Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties. Rev. Symbolic Logic 6(3), 394–423 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cintula, P., Horčík, R., Noguera, C.: The quest for the basic fuzzy logic. In: Montagna, F. (ed.) Petr Hájek on Mathematical Fuzzy Logic. OCL, vol. 6, pp. 245–290. Springer, Cham (2015). doi: 10.1007/978-3-319-06233-4_12 Google Scholar
  9. 9.
    Cintula, P., Noguera, C.: Implicational (semilinear) logics I: a new hierarchy. Arch. Math. Logic 49(4), 417–446 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cintula, P., Noguera, C.: A Henkin-style proof of completeness for first-order algebraizable logics. J. Symb. Log. 80(1), 341–358 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Log. 24(2), 97–106 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124(3), 271–288 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Esteva, F., Godo, L., García-Cerdaña, À.: On the hierarchy of t-norm based residuated fuzzy logics. In: Fitting, M.C., Orlowska, E. (eds.) Beyond Two: Theory and Applications of Multiple-Valued Logic, Studies in Fuzziness and Soft Computing, vol. 114, pp. 251–272. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Fine, K.: Vagueness, truth and logic. Synthese 30, 265–300 (1975). Reprinted with corrections in [22], pp. 119–150Google Scholar
  15. 15.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  16. 16.
    Galatos, N., Ono, H.: Cut elimination and strong separation for substructural logics: an algebraic approach. Ann. Pure Appl. Logic 161(9), 1097–1133 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Hájek, P.: Fuzzy logics with noncommutative conjunctions. J. Log. Comput. 13(4), 469–479 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jenei, S., Montagna, F.: A proof of standard completeness for Esteva and Godo’s logic MTL. Stud. Logica. 70(2), 183–192 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jenei, S., Montagna, F.: A proof of standard completeness for non-commutative monoidal t-norm logic. Neural Netw. World 13(5), 481–489 (2003)Google Scholar
  21. 21.
    Keefe, R.: Theories of Vagueness. Cambridge University Press, Cambridge (2000)Google Scholar
  22. 22.
    Keefe, R., Smith, P. (eds.): Vagueness: A Reader. MIT Press, Cambridge (1997)Google Scholar
  23. 23.
    Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of Language and Its Mathematical Aspects, pp. 166–178. American Mathematical Society, Providence (1961)CrossRefGoogle Scholar
  24. 24.
    Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, cl. III 23(iii), 30–50 (1930)Google Scholar
  25. 25.
    Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symb. Log. 72(3), 834–864 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Paoli, F.: Truth degrees, closeness, and the sorites. In: Bueno, O., Abasnezhad, A. (eds.) On the Sorites Paradox. Springer (to appear)Google Scholar
  27. 27.
    Paoli, F.: Comparative logic as an approach to comparison in natural language. J. Semant. 16, 67–96 (1999)CrossRefGoogle Scholar
  28. 28.
    Raffman, D.: Vagueness without paradox. Philos. Rev. 103, 41–74 (1994)CrossRefGoogle Scholar
  29. 29.
    Shapiro, S.: Vagueness in Context. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  30. 30.
    Smith, N.J.J.: Consonance and dissonance in solutions to the sorites. In: Bueno, O., Abasnezhad, A. (eds.) On the Sorites Paradox. Springer (to appear)Google Scholar
  31. 31.
    Smith, N.J.J.: Undead argument: the truth-functionality objection to fuzzy theories of vagueness. To appear in Synthese. doi: 10.1007/s11229-014-0651-7
  32. 32.
    Smith, N.J.J.: Vagueness as closeness. Australas. J. Philos. 83, 157–183 (2005)CrossRefGoogle Scholar
  33. 33.
    Smith, N.J.J.: Vagueness and Degrees of Truth. Oxford University Press, Oxford (2008). Paperback 2013CrossRefGoogle Scholar
  34. 34.
    Sorensen, R.: Vagueness and Contradiction. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  35. 35.
    Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT Press, Cambridge (2008)Google Scholar
  36. 36.
    Williamson, T.: Vagueness. Routledge, London (1994)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Petr Cintula
    • 1
  • Carles Noguera
    • 2
  • Nicholas J. J. Smith
    • 3
  1. 1.Institute of Computer ScienceCzech Academy of SciencesPragueCzech Republic
  2. 2.Institute of Information Theory and AutomationCzech Academy of SciencesPragueCzech Republic
  3. 3.Department of PhilosophyUniversity of SydneySydneyAustralia

Personalised recommendations