• Wolfgang DemtröderEmail author
Part of the Graduate Texts in Physics book series (GTP)


Laser is an acronym for Light Amplification by Stimulated Emission of Radiation that describes the basic physical principle of its operation. Gordon, Zeiger and Townes [1] showed for the first time in 1955 that a microwave could be amplified by \(\mathrm {NH}_{3}\) molecules on the inversion transition at \(\lambda =1.26\,\mathrm {cm}\) (Fig.  4.14) if these molecules were prepared in such a way that the upper level of the transition had a larger population than the lower one. With such inverted \(\mathrm {NH}_{3}\) molecules inside a microwave cavity, the first “maser” (microwave amplification by stimulated emission of radiation) could be operated.


  1. 1.
    J.P. Gordon, H.J. Zeiger, C.H. Townes, Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of \({\rm N}{\rm H}_{3}\). Phys. Rev. 95, 282 (1954)ADSCrossRefGoogle Scholar
  2. 2.
    A.L. Schawlow, C.H. Townes, Infrared and optical masers. Phys. Rev. 112, 1940 (1958)ADSCrossRefGoogle Scholar
  3. 3.
    T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493 (1960)ADSCrossRefGoogle Scholar
  4. 4.
    A. Siegmann, Lasers (Oxford University Press, Oxford, 1986)Google Scholar
  5. 5.
    O. Svelto, Principles of Lasers, 5th edn. (World Publication Company, 2014)Google Scholar
  6. 6.
    B. Hitz, J. Ewing, J. Hecht, Introduction to Laser Technology (Wiley & Sons, IEEE Press, 2012)CrossRefGoogle Scholar
  7. 7.
    S. Hooker, C. Webb, Laser Physics (Oxford Univ. Press, Oxford, 2010)Google Scholar
  8. 8.
    J. Hecht, Understanding Lasers, 3rd edn. (Wiley-IEEE Press, New Jersey, 2008)CrossRefGoogle Scholar
  9. 9.
    ChH Townes, How the Laser Happened (Oxford University Press, Oxford, 2001)zbMATHGoogle Scholar
  10. 10.
    F. Bretenaker, N. Treps, Laser, 50 Years of Discoveries (World Sci. Publ, Singapore, 2014)CrossRefGoogle Scholar
  11. 11.
    N. Hodgson, H. Weber, Laser Resonators Beam Propogation. Fundamentals, Advanced Concepts and Applications, vol. 108. (Springer Series in Optical Sciences, 2004)Google Scholar
  12. 12.
    R. Kossowsky et al., Optical Resonators: Science and Engineering (Kluwer Academic Publishers, Dordrecht, 1998)CrossRefGoogle Scholar
  13. 13.
    G.D. Boyd, H. Kogelnik, Generalized confocal resonator theory. Bell Syst. Tech. J. 41, 1347 (1962)CrossRefGoogle Scholar
  14. 14.
    E.L. Saldin, E. Schneidmiller, M. Yunkow, The Physics of Free Electron Lasers (Springer, Heidelberg, 2000)CrossRefGoogle Scholar
  15. 15.
    J. Madey, Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    P. Schmüser, M. Doohlus, Free electron lasers in the ultraviolet and X-ray regions (Springer Tracts in Mod, Phys, 2015)Google Scholar
  17. 17.
    K.-J. Kim, Z. Huang, R. Lindberg, Synchrotron Radiation and Free Electron Lasers (Cambridge University Press, Cambridge, 2017)CrossRefGoogle Scholar
  18. 18.
    E.L. Saldin, E. Schneidmiller, M. Yunkow, The Physics of Free Electron Lasers (Springer, Heidelberg, 1999)Google Scholar
  19. 19.
    W. Demtröder, Laser Spectroscopy, 5th edn. (Springer, Berlin, 2015)Google Scholar
  20. 20.
    H.P. Friend, T.N. Antonson, Principle of Free Electron Pairs (Springer, Chapman, 1992)CrossRefGoogle Scholar
  21. 21.
    D.L. Mills, Nonlinear Optics, 2nd edn. (Springer, Berlin, 1998)CrossRefGoogle Scholar
  22. 22.
    N. Bloembergen, Nonlinear Optics, 4th edn. (World Scientific, Singapore, 1996)CrossRefGoogle Scholar
  23. 23.
    R. Szipöcz, A. Köbazi-Kis, Theory and designs of chirped dielectric laser mirrors. Appl. Phys. B 65, 115 (1997)ADSGoogle Scholar
  24. 24.
    C.V. Shank, R.L. Fork, R. Yen, R.W. Stolen, W.J. Tomlinson, Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    H.W. Schröder et al., A high power single mode CW dye ring laser. Appl. Phys. 14, 377 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations