The Concept of the Atom

  • Wolfgang DemtröderEmail author
Part of the Graduate Texts in Physics book series (GTP)


Our present knowledge about the size and internal structure of atoms is the result of a long development of ideas and concepts that were initially based both on philosophical speculations and on experimental hints, but were often not free of errors. Only during the 19th century did the increasing number of detailed and carefully planned experiments, as well as theoretical models that successfully explained macroscopic phenomena by the microscopic atomic structure of matter, could collect sufficient evidence for the real existence of atoms and therefore convinced more and more scientists. However, even around the year 1900, some well-reputed chemists, such as Wilhelm Ostwald (1853–1932), and physicists, e.g., Ernst Mach (1838–1916), still doubted the real existence of atoms. They regarded the atomic model as only a working hypothesis that could better explain many macroscopic phenomena, but should not be taken as reality.


  1. 1.
    I. Asimov, The History of Physics (Walker & Company, New York, 1984); B. Pullmann, The Atom in the History of Human Thought (Oxford University Press, Oxford, 2002)Google Scholar
  2. 2.
    J.D. Bernal, A History of Classical Physics (Barnes & Noble, Basking Ridge, N.J., 1997); J. McDonnell, The Concept of Atoms from Demokritus to John Dalton (Edwin Mellen Press, New York, 1992); J. Agassi, The Continious Revolution: A History of Physics from the Greeks to Einstein (McGraw Hills, New York, 1968); R.E. Peierls, Atomic History (Springer, Berlin, 1997)Google Scholar
  3. 3.
    R. Purrington, Physics in the Nineteenth Century (Rutgers University Press, Camden, N.J., 1997); C. Cercignani, Boltzmann, the Man Who Trusted Atoms (Oxford University Press, Oxford, 1999)Google Scholar
  4. 4.
    H. Krach, Quantum Generations: A History of Physics in the Twentieth Century (Princeton University Press, Princeton, 2002)Google Scholar
  5. 5.
    Clifford A. Pickover: Physics Book: From the Big Bang to Quantun Resurrection (Sterling Publisher Milestones, 2011)Google Scholar
  6. 6.
    J.Z. Buchwald, R. Fox eds: Oxford Handbook of the History of Physics (Oxford 2017)Google Scholar
  7. 7.
    J. Dalton, A New System of Chemical Philosophy (Bickerstaff London 1808) reproduced as facsimile by William Dawson & Sons, London, Science Classics Library (New York 1964) and Cambridge Library Collection, Cambridge 2010Google Scholar
  8. 8.
    R.D. Deslattes, The avogadro-constant. Ann. Rev. Phys. Chem. 31, 435 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    M. de Podesta et al., A low-uncertainty measurement of the Boltzmann constant. Metrologia 50, 354–376 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    D. Attwood, Soft X-Rays and Extrem UV-Radiation: Principles and Applications (Cambridge University Press, Cambridge, 1999)Google Scholar
  11. 11.
    P. Becker, Avogadro Constant Remeasured. PTB News 03.1. P. Becker et al., Large Scale Production of highly enriched \(^{28}{\text{Si}}\) for the Precise Determination of the Avogadro Constant. Meas. Sci. Technol. 17, 1854–1860 (2006)Google Scholar
  12. 12.
    D.R. White, J. Fischer, The Boltzmann constant and the new kelvin. Metrologia 52, 5 (2015)CrossRefGoogle Scholar
  13. 13.
    U. Bonse, M. Hart, An X-ray-interferometer. Appl. Phys. Lett. 6, 155 (1965).; B. Kramer (ed.), The Art of Measurement (VCH, Weinheim, 1988)
  14. 14.
  15. 15.
    W. Demtröder, Experimental Physics, vol. 1. Mechanics and Thermodynamics (Springer, Heidelberg, 2017)Google Scholar
  16. 16.
    A. Einstein, Investigations on the Theory of Brownian Motion (Dover, New York, 1956); A. Borodin, P. Salmimen, Handbook of Brownian Motion (Birkhäuser, Boston, 1996)Google Scholar
  17. 17.
    E. Kappler, Die Brown’sche Molekularbewegung. Naturwissenschaften 27, 649 (1939)ADSCrossRefGoogle Scholar
  18. 18.
    K.S. Birdi, Scanning Probe Microscope: Applications in Science and Technology (CRC-Press, Boca Raton, 2003)CrossRefGoogle Scholar
  19. 19.
    St. Flegler, J. Heckman, K.L. Klomparens, Scanning and Transmission Electron Microscope (Oxford University Press, Oxford, 1995)Google Scholar
  20. 20.
    E.W. Müller, Feldemission, Ergebn. exakter Naturwiss. XXVII 290–360 (1953)Google Scholar
  21. 21.
  22. 22.
    R. Glaser Biophysics. An Introduction, 2nd edn. Springer (2012)Google Scholar
  23. 23.
    D.E. Evans, Measurement of Boltzmann Constant. Phys. Edu. 21, 5 (1986)Google Scholar
  24. 24.
    D.B. Williams, C.B. Carter, Transmission Electron Microscopy (Plenum Press, New York, 1996)CrossRefGoogle Scholar
  25. 25.
    R.F. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM and AEM (Springer, Berlin, 2008)Google Scholar
  26. 26.
    D. Chescoe, P.J. Goodhew, The Operation of Transmission and Scanning Electron Microscopy (Oxford Science Publications, Oxford, 1990)Google Scholar
  27. 27.
    D. Breger, The Art of the Scanning Electron Microscope (Columbia University Press, New York, 1995)Google Scholar
  28. 28.
    C.B. Gilmore, The Unseen Universe; Photographs from the Scanning Electron Microscope (Schocken Books, New York, 1974)Google Scholar
  29. 29.
    D.A. Bonnell (ed.), Scanning Tunneling Microscopy and Spectroscopy (VCH, Weinheim, 1993)Google Scholar
  30. 30.
    J.A. Stroscio, W.J. Kaiser (eds.), Scanning tunneling microscopy, Methods of Experimental Physics, vol. 27 (Academic, New York, 1993)Google Scholar
  31. 31.
    C. Bai, Scanning Tunneling Microscopy and its Applications, vol. 32 (Springer series in surface science (Springer, Berlin, 2000)Google Scholar
  32. 32.
    R. Wiesendanger, H.J. Guntherodt, Theory of STM and related Scanning Probe Methods, vol. 3 (Springer series in surface science (Springer, Berlin, 1998)Google Scholar
  33. 33.
    D.M. Eigler, E.K. Schweitzer, Positioning single atoms with a scanning tunneling microscope. Nature 344, 524 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    A. Kühnle, G. Meyer, S.W. Hla, K.-H. Rieder, Understanding atom movement during lateral manipulation with the STM tip using a simple simulation method. Surf. Sci. 499, 15 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    S.H. Cohen, Atomic Force Microscopy/Scanning Tunneling Microscopy (Plenum Press, New York, 1995)Google Scholar
  36. 36.
    D.Y. Lee, High Speed and Higly Accurate Tip-scanning Atomic Force Microscope (VDM Verlag, Germany, 2008)Google Scholar
  37. 37.
    S. Morita, Non-Contact Atomic Force Microscopy (Springer, Berlin, 2002)CrossRefGoogle Scholar
  38. 38.
    P.E. West, Introduction to Atomic Force Microscopy: Theory, Practice and Applications.
  39. 39.
  40. 40.
  41. 41.
    P. Eaton, P. West, Atomic Force Micrcoscopy (Oxford University Press, Oxford, 2010)CrossRefGoogle Scholar
  42. 42.
    R.G. Reifenberger, Fundamentals of Atomic Force Microscoy (World Scientific Publishing, Singapore, 2015)CrossRefGoogle Scholar
  43. 43.
    E.J. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    W. Wien, Kanalstrahlen, Handbuch der Experimentalphysik, vol. 14 (Springer, Berlin, 1927)zbMATHGoogle Scholar
  45. 45.
    A.M. Robert, Nobel Lecture (Elsevier Publishing Company, Amsterdam, 1965)Google Scholar
  46. 46.
    V.W. Hughes, L. Schulz (eds.), Sources of Atomic Particles. Methods of Experimental Physics, vol. 4; Atomic and Electron Physics (Academic, San Diego, 1988)Google Scholar
  47. 47.
    J.P. Guzowsky, G.M. Hieftje, Gas sampling glow discharge: a versatile ionization source for gas chromatography time of flight mass spectrrometry. Anal. Chem. 72, 3812 (2000)CrossRefGoogle Scholar
  48. 48.
    I.G. Brown, The Physics and Technology of Ion Sources, 2nd edn. (Wiley, New York, 2004)CrossRefGoogle Scholar
  49. 49.
  50. 50.
    R.A. Lyttleton, H. Bondi, On the physical consequence of a general excess of charge. Proc. Roy. Soc. A252, 313 (1959)ADSMathSciNetGoogle Scholar
  51. 51.
    G. Gallinaro, M. Marinelli, G. Morpurgo, Electric neutrality of matter. Phys. Rev. Lett. 38, 1255 (1977)ADSCrossRefGoogle Scholar
  52. 52.
    M. Szilagyi, Electron and Ion Optics (Plenum Publishing Corporation, New York, 1988)CrossRefGoogle Scholar
  53. 53.
    H. Liebl, Applied Charged Particle Optics (Springer, Berlin, 2007)Google Scholar
  54. 54.
    P.W. Hawkes, E. Kasper (eds.), Principles of Electron Optics (Academic, New York, 1996)Google Scholar
  55. 55.
    R.F. Egerton, Energy Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1996)CrossRefGoogle Scholar
  56. 56.
    F. Zhang, Z. Zhang (eds.), Progress in Transmission Electron Microscopy, vol. 38, 39, Springer series in surface science (Springer, Berlin, 2001)Google Scholar
  57. 57.
    L. Reimer, H. Kohl, Transmission Electron Mircroscopy: Physics of Image Formation (Springer, Berlin, 2008)Google Scholar
  58. 58.
    E. De Hoffmann, V. Strobant, Mass Spectrometry: Principles and Applications, 3rd edn. (Wiley, New York, 2007)Google Scholar
  59. 59.
    JTh Watson, O.D. Sparkman, Introduction to Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation, 4th edn. (Wiley, New York, 2007)CrossRefGoogle Scholar
  60. 60.
    H.-J. Hübschmann, Handbook of GC/MS, Fundamentals and Applications, 3rd edn. (Wiley-VCH Verlagsgesellschaft, Weinheim, 2015)Google Scholar
  61. 61.
    H.-J. Hübschmann, Mass Spectrometry Milestones. In: Nature Methods. (2015), Band 12, Supplement (PDF)Google Scholar
  62. 62.
  63. 63.
    D. Zwillinger, Handbook of Differential Equations. 3rd edn, p. 125. (Academic Press, Boston, MA 1997)Google Scholar
  64. 64.
    J.H. Gross, Mass Spectrometry: A Textbook, 3rd edn. (Springer, Berlin, 2011)CrossRefGoogle Scholar
  65. 65.
    J.R. de Laeter, Application of Inorganic Mass Spectrometry (Wiley Interscience, New York, 2001)Google Scholar
  66. 66.
    J. Mattauch, Massenspektrographie und ihre Anwendungen und Probleme der Atom- und Kernchemie. Ergebnisse der exakten Naturwiss. 19, 170 (1940)Google Scholar
  67. 67.
    W.C. Wiley, I.H. McLaren, Time-of-flight mass spectrometer with improved resolution. Rev. Scient. Instrum. 26, 1150 (1955)ADSCrossRefGoogle Scholar
  68. 68.
    E.W. Schlag (ed.), Time of Flight Mass Spectrometry and its Applications (Elsevier, Amsterdam, 1994)Google Scholar
  69. 69.
    D.M. Lubmann, Lasers and Mass Spectrometry (Oxford University Press, Oxford, 1990)Google Scholar
  70. 70.
    R.N. Zare, Development of a Miniaturized Hadamard Transform Time-of-Flight Mass Spectrometer (2007)Google Scholar
  71. 71.
    M.M. Kappes, Experimental studies of gas-phase main group clusters. Chem. Rev. 88, 369 (1988)CrossRefGoogle Scholar
  72. 72.
    W. Paul, Elektromagnetische Käfige für geladene und neutrale Teilchen, Phys. Blätter 46, 227 (1990); W. Paul, Angew. Chemie Int. Ed. Engl. 29, 739 (1990)CrossRefGoogle Scholar
  73. 73.
  74. 74.
    L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  75. 75.
    G. Bollen, R.B. Moore, G. Savard, H. Stoltzenberg, The accuracy of heavy ion mass measurement using time of flight ion cyclotron resonance in a Penning trap. J. Appl. Phys. 68, 4355 (1990)ADSCrossRefGoogle Scholar
  76. 76.
    J. Chadwick (ed.), Collected Papers of Lord Rutherford (Vieweg, Braunschweig, 1963)Google Scholar
  77. 77.
    E. Rutherford, J. Chadwick, Ellis, Radiation from Radioactive Substances (Cambridge, 1930), p. 197Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations