Experimental Techniques in Atomic and Molecular Physics

  • Wolfgang DemtröderEmail author
Part of the Graduate Texts in Physics book series (GTP)


The goals of all experimental investigations in atomic and molecular physics are: To gain information about the structure of atoms and molecules and their mutual interactions. To determine the bonding and ionization energies and to investigate electric and magnetic moments and their influence on the interaction energy To acquire more details about time dependent processes in atoms and molecules, i.e., about the molecular dynamics, which govern all atomic and molecular processes, such as chemical reactions and the interactions of photons with matter. They are the basis for all biological processes and therefore for life on earth.


  1. 1.
    A.C. Melissonos, J. Napolitano, Experiments in Modern Physics, 2nd edn. (Academic Press, New York, 2003); B. Bederson, H. Walther (eds.), Advances in Atomic, Molecular and Optical Physics, vol 1–66 (Academic Press, New York)Google Scholar
  2. 2.
    E. Wolf (ed.), Progress in Optics, vol. 1–62 (North-Holland Publ., Amsterdam, 1961–2017)Google Scholar
  3. 3.
    E. Popov, E.G. Loewen, Diffraction Gratings and Applications (Dekker, New York, 1997)Google Scholar
  4. 4.
    M.D. Perry et al., High efficiency multilayer dielectric diffraction gratings. Opt. Lett. 20, 140 (1995)Google Scholar
  5. 5.
    W.H. Steel, Interferometry (Cambridge University Press, Cambridge, 1967)Google Scholar
  6. 6.
    D.F. Buscher, M. Longair: Practical Optical Interferometry (Cambridge University Press, 2015)Google Scholar
  7. 7.
    P. Hariharan, Optical Interferometry (Academic, New York, 2nd edn. 2003)Google Scholar
  8. 8.
    J.M. Vaughan, The Fabry-Perot Interferometer (Hilger, Bristol, 1989)Google Scholar
  9. 9.
    G.H. Rieke, Detection of Light (From the Ultraviolet to the Submillimeter (Cambridge University Press, Cambridge, 2002)Google Scholar
  10. 10.
    J.J. Keyes (ed.), Optical and Infrared Detection, 2nd edn. (Springer, Berlin, 1980)Google Scholar
  11. 11.
    J.D. Vincent, St. Hodges, Fundamentals of Infrared and Visible Detector Operation and Testing, 2nd edn. (Wiley Series in Pure and Applied Optics, Wiley 2015)Google Scholar
  12. 12.
    E.H. Putley, Thermal detectors, in [9], p. 71Google Scholar
  13. 13.
    M. Zen, Cryogenic bolometers, in Atomic and Molecular Beam Methods, vol. I ed. by G. Scales (Oxford University Press, Oxford, 1988)Google Scholar
  14. 14.
    See for instance the information sheets on photo-multipliens, issued by the manufacturers RCA, EMI, Hamamatsu, available on the webGoogle Scholar
  15. 15.
    A.L. ChH Townes, Schalow, Microwave Spectroscopy (Dover Publications, Mineola, 1975)Google Scholar
  16. 16.
    J.W. Fleming, J. Chamberlain, Infrared Phys. 14, 277 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    B.H. Stuart et al., Modern Infrared Spectroscopy (Wiley, Chichester, 1996); H. Günzler, H.V. Gremlich, IR-Spectroscopy: An Introduction (Wiley VCH, Weinheim, 2002)Google Scholar
  18. 18.
    P.R. Griffith, J.A. DeHaseth, Fourier Transform Infrared Spectroscopy, 2nd edn. (Wiley Interscience, New York, 1986); R.R. Williams, Spectroscopy and the Fourier Transform (Wiley, New York, 1995)Google Scholar
  19. 19.
    B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC-Press, Boca Raton); J. Kauppinen, J. Partanen, Fourier Transforms in Spectroscopy (Wiley, New York, 2001)Google Scholar
  20. 20.
    W. Demtröder, Laser Spectroscopy, 5th edn. (Springer, Berlin, Heidelberg 2015)Google Scholar
  21. 21.
    J.C. Lindon, G.E. Trautner, J.L. Holmes, Encyclopedia of Spectroscopy and Spectrometry, vol (I-III (Academic, London, 2000)Google Scholar
  22. 22.
    F. Träger (ed.), Springer Handbook of Lasers and Optics (Springer, Heidelberg, 2007)Google Scholar
  23. 23.
    J. Sneddon (ed.), Lasers in Analytical Atomic Spectroscopy (Wiley, New York, 1997)Google Scholar
  24. 24.
    A. Rosencwaig, Photoacoustic Spectroscopy (Wiley, New York, 1980)CrossRefGoogle Scholar
  25. 25.
    L.V. Wang, Photoacoustic Imaging and Spectroscopy, vol. 144 (CRC-Press, Optical Science and Engineering, 2009)Google Scholar
  26. 26.
    J. Xiu, R. Stroud, Acousto-Optic Devices, Principles, Design and Applications (Wiley, New York, 1992)Google Scholar
  27. 27.
    B. Barbieri, N. Beverini, A. Sasso, Optogalvanic spectroscopy. Rev. Mod. Phys. 62, 603 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    K. Narayanan, G. Ullas, S.B. Rai, A two step optical double resonance study of a FE-Ne-hollow cathode discharge using optogalvanic detection. Opt. Commun. 184, 102 (1991)Google Scholar
  29. 29.
    M.A. Zia, M.A. Baig, Laser optogalvanic spectroscopy of the even parity Rydberg states of atomic mercury. J. Opt. Soc. Am. B 22, 2702 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    V.N. Ochkin, N.G. Prebrazhensky, N.Y. Shaparev, The Optogalvanic Effect (Chem. Rub. Comp, Cleveland Ohio, 1999)Google Scholar
  31. 31.
    P. Zalicki, R.N. Zare, Cavity Ringdown spectroscopy for quantitative absorption measurements. J. Chem. Phys. 102, 2708 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    J.L. Hall. Defining and measuring optical frequencies. Nobel Lecture, 8 Dec. 2005, available at:
  33. 33.
    D. Romanini, K.K. Lehmann, Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven and eight stretching quanta. J. Chem. Phys. 99, 6287 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    G. Berden, R. Engeln, Cavity Ringdown Spectroscopy: Techniques and Applications (Wiley-Blackwell 2009)Google Scholar
  35. 35.
    G. Höning, M. Cjajkowski, M. Stock, W. Demtröder, High resolution spectroscopy of \({\rm Cs}_2\). J. Chem. Phys. 71, 2138 (1979); M. Raab, H. Weickenmeier, W. Demtröder, The dissociation energy of the cesium dimer. Chem. Phys. Lett. 88, 377 (1982)CrossRefGoogle Scholar
  36. 36.
    G. Hurst, M.G. Payne, Principles and Applications of Resonance Ionisation Spectroscopy, ed. by D.S. Kliger (Academic, New York, 1983)Google Scholar
  37. 37.
    J.J. Kluge. K. Wendt, eds. Seventh International Symposium on Resonance Ionization Spectroscopy 1994. Vol. 329 (AIP Conference Proceedings, Am. Institute of Physics 2000)Google Scholar
  38. 38.
    J.B. Atkinson, J. Becker, W. Demtröder, Hyperfine structure of the 625 nm band in the \(a^{3}\Pi _{\mu }\leftarrow X\sum _{S}^{1}\) transition of \({\rm Na}_{2}\). Chem. Phys. Lett. 87, 128 (1982)ADSCrossRefGoogle Scholar
  39. 39.
    B. Bobin, C.J. Bordé, C. Bréant, Vibration-rotation molecular constants for the ground state and \(\nu _{3}=1\) states of \({\rm SF}_{6}\) from saturated absorption spectroscopy. J. Mol. Spectrosc. 121, 91 (1987)ADSCrossRefGoogle Scholar
  40. 40.
    A. Timmermann, High resolution two-photon spectroscopy of the \(6\, p^{2\,3}{\rm P}_{0}-7p^{3}{\rm P}_{0}\) transition in stable lead isotopes. Z. Phys. A 286, 93 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    G. Grynberg, B. Cagnac, Doppler-free multiphoton spectroscopy. Rep. Prog. Phys. 40, 791 (1977)ADSCrossRefGoogle Scholar
  42. 42.
    H.W. Schrötter, H. Frunder, H. Berger, J.P. Boquitlon, B. Lavorel, G. Millet, High resolution CARS and inverse Raman spectroscopy, in Advanced Nonlinear Spectroscopy, vol. 3, p. 97 (Wiley, New York, 1987)Google Scholar
  43. 43.
    J.P. Taran: CARS-spectroscopy and applications, in Applied Laser Spectroscopy, ed. by W. Demtröder, M. Inguscio (Plenum Press, New York, 1990)Google Scholar
  44. 44.
    W. Zinth et al., Femtosecond spectroscopy and model calculations for an understanding of the primary reactions in bacterio-rhodopsin, in: Ultrafast Phenomena XII, ed. by T. Elsässer et al. (Springer, Berlin, 2000)Google Scholar
  45. 45.
    Ch. Kunz, Synchrotron Radiation. Techniques and Applications (Springer, Berlin, 1979); J.A.R. Samson, D.L. Lederer, Vacuum Ultraviolet Spectroscopy (Academic, New York, 2000)Google Scholar
  46. 46.
    Kwang-Je Kim, Zhirong Huang: Synhrotron Radiation and Free Electron Lasers (Cambridge University Press 2017)Google Scholar
  47. 47.
    G. Brown et al., Wiggler and Undulator Magnets: A Review. Nucl Instrum Methods 208, 65–77 (1983)ADSCrossRefGoogle Scholar
  48. 48.
    P. Schlemmer, M.K. Srivastava, T. Rösel, H. Ehrhardt, Electron impact ionization of helium at intermediate collision energies. J. Phys. B 24, 2719 (1991)ADSCrossRefGoogle Scholar
  49. 49.
    N.H. March, J.F. Mucci, Chemical Physics of Free Molecules (Plenum Press, New York, 1992)Google Scholar
  50. 50.
    H. Hotop, M.W. Ruf, M. Allan, I.I. Fabrikant, Resonance and Treshold Phenomena in Low-Energy Electron Collisions with Molecules and Clusters. Adv. At. Mol. Opt. Phys. 49, 85 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    E.W. Schlag, ZEKE-Spectroscopy (Cambridge University Press, Cambridge, 1998)Google Scholar
  52. 52.
    R. Signorell, F. Merkt, H. Palm, Structure of the ammonium radical from a rotationally resolved photoelectron spectrum. J. Chem. Phys. 106, 6523 (1997)ADSCrossRefGoogle Scholar
  53. 53.
    See for instance: N.F. Ramsey, Molecular Beams, 2nd edn (Clarendon Press, Oxford, 1989)Google Scholar
  54. 54.
    K. Bergmann, State selection via optical methods, in Atomic and Molecular Beam Methods, vol. 1, ed. by G. Scoles (Oxford University Press, Oxford, 1988)Google Scholar
  55. 55.
    J.C. Zorn, T.C. English, Molecular beam electric resonance spectroscopy. Adv. Atom. Mol. Phys. 9, 243 (1973)ADSCrossRefGoogle Scholar
  56. 56.
    K. Uehara, T. Shimizu, K. Shimoda, High resolution Stark spectroscopy of molecules by infrared and farinfrared masers. IEEE J. Quantum Electron. 4, 728 (1968)ADSCrossRefGoogle Scholar
  57. 57.
    Proceedings of International Conference on the Physics of Electronic and Atomic Collisions ICPEAC I-XXVI (North Holland Publ., Amsterdam, 1959–2010)Google Scholar
  58. 58.
    see for instance: HMI-information in English on the web,
  59. 59.
    K. Bergmann, State selection via optical method, in Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford University Press, Oxford, 1989)Google Scholar
  60. 60.
    K. Bergmann, U. Hefter, J. Witt, State-to-state differential cross sections for rotational transitions in \({\rm Na}_{2}+\) He collisions. J. Chem. Phys. 71, 2726 (1979)ADSCrossRefGoogle Scholar
  61. 61.
    M.A.D. Fluendy, K.P. Lawley, Chemical Applications of Molecular Beam Scattering (Chapman & Hall, London, 1973)Google Scholar
  62. 62.
    F. Leomon et al., Crossed-beam universal detection reactive scattering of radical beams. Mol. Phys. 108, 1097 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    P.V. O’Connor, P. Phillips, Time Correlated Single Photon Counting (Academic, New York, 1984)Google Scholar
  64. 64.
    W. Becker: Advanced Time-correlated Single Photon Count Applications (Springer Series in Chemical Physics 111, Springer 2015Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations