On the Length of Medial-Switch-Mix Derivations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10388)

Abstract

Switch and medial are two inference rules that play a central role in many deep inference proof systems. In specific proof systems, the mix rule may also be present. In this paper we show that the maximal length of a derivation using only the inference rules for switch, medial, and mix, modulo associativity and commutativity of the two binary connectives involved, is quadratic in the size of the formula at the conclusion of the derivation. This shows, at the same time, the termination of the rewrite system.

References

  1. 1.
    Bechet, D., Groote, P., Retoré, C.: A complete axiomatisation for the inclusion of series-parallel partial orders. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 230–240. Springer, Heidelberg (1997). doi:10.1007/3-540-62950-5_74 CrossRefGoogle Scholar
  2. 2.
    Blute, R., Cockett, R., Seely, R., Trimble, T.: Natural deduction and coherence for weakly distributive categories. J. Pure Appl. Algebra 113, 229–296 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brünnler, K., Tiu, A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 347–361. Springer, Heidelberg (2001). doi:10.1007/3-540-45653-8_24 CrossRefGoogle Scholar
  4. 4.
    Bruscoli, P.: A purely logical account of sequentiality in proof search. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 302–316. Springer, Heidelberg (2002). doi:10.1007/3-540-45619-8_21 CrossRefGoogle Scholar
  5. 5.
    Bruscoli, P., Guglielmi, A.: On the proof complexity of deep inference. ACM Trans. Comput. Logic 10(2), 1–34 (2009). Article 14MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bruscoli, P., Guglielmi, A., Gundersen, T., Parigot, M.: A quasipolynomial cut-elimination procedure in deep inference via atomic flows and threshold formulae. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 136–153. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4_9 CrossRefGoogle Scholar
  7. 7.
    Bruscoli, P., Guglielmi, A., Gundersen, T., Parigot, M.: A quasipolynomial normalisation in deep inference via atomic flows and threshold formulae. Log. Methods Comput. Sci. 12(1:5), 1–30 (2016)MathSciNetMATHGoogle Scholar
  8. 8.
    Das, A.: Complexity of deep inference via atomic flows. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 139–150. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30870-3_15 CrossRefGoogle Scholar
  9. 9.
    Das, A.: Rewriting with linear inferences in propositional logic. In: van Raamsdonk, F. (ed) 24th International Conference on Rewriting Techniques and Applications (RTA). Leibniz International Proceedings in Informatics (LIPIcs), vol. 21, pp. 158–173. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2013)Google Scholar
  10. 10.
    Das, A., Straßburger, L.: No complete linear term rewriting system for propositional logic. In: Fernandez, M. (ed) 26th International Conference on Rewriting Techniques and Applications, RTA 2015. LIPIcs, Warsaw, Poland, 29 June to 1 July 2015, vol. 36, pp. 127–142 (2015)Google Scholar
  11. 11.
    Das, A., Straßburger, L.: On linear rewriting systems for boolean logic and some applications to proof theory. Log. Methods Comput. Sci. 12(4) (2016)Google Scholar
  12. 12.
    Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Logic 8(1), 1–64 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guglielmi, A., Gundersen, T.: Normalisation control in deep inference via atomic flows. Log. Methods Comput. Sci. 4(1:9), 1–36 (2008)MathSciNetMATHGoogle Scholar
  14. 14.
    Guglielmi, A., Gundersen, T., Straßburger, L.: Breaking paths in atomic flows for classical logic. In: LICS 2010 (2010)Google Scholar
  15. 15.
    Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 54–68. Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0_5 CrossRefGoogle Scholar
  16. 16.
    Gundersen, T., Heijltjes, W., Parigot, M.: Atomic lambda calculus: a typed lambda-calculus with explicit sharing. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, 25–28 June 2013, pp. 311–320. IEEE Computer Society (2013)Google Scholar
  17. 17.
    Kahramanogullari, O.: Interaction and depth against nondeterminism in proof search. Log. Methods Comput. Sci. 10(2) (2014)Google Scholar
  18. 18.
    Lamarche, F.: Exploring the gap between linear and classical logic. Theory Appl. Categ. 18(18), 473–535 (2007)MathSciNetMATHGoogle Scholar
  19. 19.
    Straßburger, L.: A local system for linear logic. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 388–402. Springer, Heidelberg (2002). doi:10.1007/3-540-36078-6_26 CrossRefGoogle Scholar
  20. 20.
    Straßburger, L.: A characterization of medial as rewriting rule. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 344–358. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73449-9_26 CrossRefGoogle Scholar
  21. 21.
    Straßburger, L.: On the axiomatisation of Boolean categories with and without medial. Theory Appl. Categ. 18(18), 536–601 (2007)MathSciNetMATHGoogle Scholar
  22. 22.
    Aler Tubella, A.: A study of normalisation through subatomic logic. PhD thesis, University of Bath (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of BathBathUK
  2. 2.InriaPalaiseauFrance

Personalised recommendations