Total Search Problems in Bounded Arithmetic and Improved Witnessing

  • Arnold Beckmann
  • Jean-José Razafindrakoto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10388)


We define a new class of total search problems as a subclass of Megiddo and Papadimitriou’s class of total \({\mathsf {NP}}\) search problems, in which solutions are verifiable in \({\mathsf {AC}}^0\). We denote this class \(\forall \exists {\mathsf {AC}}^0\). We show that all total \({\mathsf {NP}}\) search problems are equivalent, w.r.t. \({\mathsf {AC}}^0\)-many-one reductions, to search problems in \(\forall \exists {\mathsf {AC}}^0\). Furthermore, we show that \(\forall \exists {\mathsf {AC}}^0\) contains well-known problems such as the Stable Marriage and the Maximal Independent Set problems. We introduce the class of Inflationary Iteration problems in \(\forall \exists {\mathsf {AC}}^0\), and show that it characterizes the provably total \({\mathsf {NP}}\) search problems of the bounded arithmetic theory corresponding to polynomial-time. Cook and Nguyen introduced a generic way of defining a bounded arithmetic theory \({\mathsf {VC}}\) for complexity classes \({\mathsf {C}}\) which can be obtained using a complete problem. For such C we will define a new class \({\mathsf {KPT[C]}}\) of \(\forall \exists {\mathsf {AC}}^0\) search problems based on Student-Teacher games in which the student has computing power limited to \({\mathsf {AC}}^0\). We prove that \({\mathsf {KPT[C]}}\) characterizes the provably total \({\mathsf {NP}}\) search problems of the bounded arithmetic theory corresponding to \({\mathsf {C}}\). All our characterizations are obtained via “new-style” witnessing theorems, where reductions are provable in a theory corresponding to AC \(^0\).



We would like to thank Noahi Eguchi. Our characterisation of \(\forall \varSigma ^B_1({\mathsf {V}}^1)\) using inflationary iteration grew out of discussions with him on his attempt to capture P via a two-sorted theory using axioms on inductive definitions [10].


  1. 1.
    Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beckmann, A., Buss, S.R.: Polynomial local search in the polynomial hierarchy and witnessing in fragments of bounded arithmetic. J. Math. Log. 9(1), 103–138 (2009). doi: 10.1142/S0219061309000847 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beckmann, A., Buss, S.R.: Characterising definable search problems in bounded arithmetic via proof notations. In: Ways of Proof Theory. Ontos Series on Mathematical Logic, vol. 2, pp. 65–133. Ontos Verlag, Heusenstamm (2010)Google Scholar
  4. 4.
    Beckmann, A., Buss, S.R.: Improved witnessing and local improvement principles for second-order bounded arithmetic. ACM Trans. Comput. Log. 15(1), 35 (2014). doi: 10.1145/2559950. (Art. 2)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Buss, S.R.: Bounded Arithmetic. Studies in Proof Theory. Lecture Notes, vol. 3. Bibliopolis, Naples (1986)zbMATHGoogle Scholar
  6. 6.
    Buss, S.R., Krajíček, J.: An application of Boolean complexity to separation problems in bounded arithmetic. Proc. Lond. Math. Soc. (3) 69(1), 1–21 (1994). doi: 10.1112/plms/s3-69.1.1 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chiari, M., Krajíček, J.: Witnessing functions in bounded arithmetic and search problems. J. Symb. Log. 63(3), 1095–1115 (1998). doi: 10.2307/2586729 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity, 1st edn. Cambridge University Press, New York (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Cook, S.A., Filmus, Y., Lê, D.T.M.: The complexity of the comparator circuit value problem. ACM Trans. Comput. Theory 6(4), 44 (2014). doi: 10.1145/2635822 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eguchi, N.: Characterising complexity classes by inductive definitions in bounded arithmetic, June 2013. ArXiv e-printsGoogle Scholar
  11. 11.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 120(5), 386–391 (2013). doi: 10.4169/amer.math.monthly.120.05.386. (Reprint of MR1531503)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York (1999). doi: 10.1007/978-1-4612-0539-5 CrossRefzbMATHGoogle Scholar
  13. 13.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988). doi: 10.1016/0022-0000(88)90046-3. (In: 26th IEEE Conference on Foundations of Computer Science, Portland, OR (1985))MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Karp, R.M., Wigderson, A.: A fast parallel algorithm for the maximal independent set problem. J. Assoc. Comput. Mach. 32(4), 762–773 (1985). doi: 10.1145/4221.4226 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kołodziejczyk, L.A., Nguyen, P., Thapen, N.: The provably total NP search problems of weak second order bounded arithmetic. Ann. Pure Appl. Log. 162(6), 419–446 (2011). doi: 10.1016/j.apal.2010.12.002 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Krajíček, J., Pudlák, P., Takeuti, G.: Bounded arithmetic and the polynomial hierarchy. Ann. Pure Appl. Logic 52(1–2), 143–153 (1991). doi: 10.1016/0168-0072(91)90043-L. (In: International Symposium on Mathematical Logic and Its Applications, Nagoya (1988))MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Krajíček, J., Skelley, A., Thapen, N.: NP search problems in low fragments of bounded arithmetic. J. Symb. Log. 72(2), 649–672 (2007). doi: 10.2178/jsl/1185803628 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Luby, M.: A simple parallel algorithm for the maximal independent set problem. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 1–10. ACM, New York (1985). doi: 10.1145/22145.22146
  19. 19.
    Mayr, E.W., Subramanian, A.: The complexity of circuit value and network stability. J. Comput. Syst. Sci. 44(2), 302–323 (1992). doi: 10.1016/0022-0000(92)90024-D MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and computational complexity. Theoret. Comput. Sci. 81(2), 317–324 (1991). doi: 10.1016/0304-3975(91)90200-L. (Algorithms, Automata, Complexity and Games)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mix-Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1. J. Comput. Syst. Sci. 41(3), 274–306 (1990). doi: 10.1016/0022-0000(90)90022-D CrossRefzbMATHGoogle Scholar
  22. 22.
    Morioka, T.: Classification of search problems and their definability in bounded arithmetic (2001)Google Scholar
  23. 23.
    Razafindrakoto, J.J.: Witnessing theorems in bounded arithmetic and applications. Ph.D. thesis, Swansea University (2016).
  24. 24.
    Thapen, N.: Higher complexity search problems for bounded arithmetic and a formalized no-gap theorem. Arch. Math. Log. 50(7–8), 665–680 (2011). doi: 10.1007/s00153-011-0240-0 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zambella, D.: Notes on polynomially bounded arithmetic. J. Symb. Log. 61(3), 942–966 (1996). doi: 10.2307/2275794 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Computer Science, College of ScienceSwansea UniversitySwanseaUK

Personalised recommendations