Cut-Elimination for the Modal Grzegorczyk Logic via Non-well-founded Proofs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10388)

Abstract

We present a sequent calculus for the modal Grzegorczyk logic \(\mathsf {Grz}\) allowing non-well-founded proofs and obtain the cut-elimination theorem for it by constructing a continuous cut-elimination mapping acting on these proofs.

Keywords

Non-well-founded proofs Grzegorczyk logic Cut elimination 

References

  1. 1.
    Avron, A.: On modal systems having arithmetical interpretations. J. Symb. Log. 49(3), 935–942 (1984)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Borga, M., Gentilini, P.: On the proof theory of the modal logic Grz. Math. Log. Q. 32(10–12), 145–148 (1986)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Maksimova, L.L.: On modal Grzegorczyk logic. Fundamenta Informaticae 81(1–3), 203–210 (2008). Topics in Logic, Philosophy and Foundations of Mathematics and Computer Science, In: Recognition of Professor Andrzej GrzegorczykMathSciNetMATHGoogle Scholar
  4. 4.
    Maksimova, L.L.: The Lyndon property and uniform interpolation over the Grzegorczyk logic. Sib. Math. J. 55(1), 118–124 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dyckhoff, R., Negri, S.: A cut-free sequent system for Grzegorczyk logic, with an application to the Gödel-McKinsey-Tarski embedding. J. Log. Comput. 26(1), 169–187 (2016)CrossRefMATHGoogle Scholar
  6. 6.
    Shamkanov, D.S.: Circular proofs for the Gödel-Löb provability logic. Math. Notes 96(3), 575–585 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoskvaRussia
  2. 2.Steklov Mathematical Institute of the Russian Academy of SciencesMoskvaRussia

Personalised recommendations