Properties of the Sound of Flue Organ Pipes

Part of the Springer Handbooks book series (SPRINGERHAND)

Abstract

This chapter is an overview of the characteristic sound properties of flue organ pipes. The characteristic properties of the stationary spectrum and attack transient have been surveyed and assigned to properties of the physical systems (air column as acoustic resonator, air jet as hydrodynamic oscillator, and pipe wall as mechanical resonator) involved in the sound generation process. The measurements presented underline the primary role of the acoustic resonator in the stationary sound and of the edge tone in the attack.

FT

Fourier transform

FWHM

full width at half maximum

Notes

Acknowledgements

The contents of this chapter have in large parts been published before [8.40]. The research surveyed in this paper was supported by several foundations in Hungary (Soros Foundation, Foundation of the Hungarian Credit Bank and István Széchenyi Foundation) and in Germany (Deutscher Akademischer Ausländerdienst (DAAD), Katholischer Akademischer Ausländerdienst (KAAD)). The research could not have progressed without the generous help of organ builders and experts, including the participants of the short courses. The authors are especially grateful for the friendly support of K. Mühleisen (Organ Builder Company Mühleisen, Leonberg, Germany) and F. Frasch (Technical College for Building of Musical Instruments, Ludwigsburg, Germany)

References

  1. 8.1
    A.W. Nolle: Sinuous instability of a planar air jet: Propagation parameters and acoustic excitation, J. Acoust. Soc. Am. 103, 3690–3705 (1998)CrossRefGoogle Scholar
  2. 8.2
    S.A. Elder: The mechanism of sound production in organ pipes and cavity resonators, J. Acoust. Soc. Jpn. (E) 13, 11–23 (1992)CrossRefGoogle Scholar
  3. 8.3
    J.W. Coltmann: Jet drive mechanisms in edge tones and organ pipes, J. Acoust. Soc. Am. 60, 724–733 (1976)CrossRefGoogle Scholar
  4. 8.4
    N.H. Fletcher: Sound production by organ flue pipes, J. Acoust. Soc. Am. 60, 926–936 (1976)CrossRefGoogle Scholar
  5. 8.5
    S. Yoshikawa, J. Saneyoshi: Feedback excitation mechanism in organ pipes, J. Acoust. Soc. Jpn. (E) 1, 175–191 (1980)CrossRefGoogle Scholar
  6. 8.6
    M.P. Verge, B. Fabre, W.E. Mahu, A. Hirschberg: Feedback excitation mechanism in organ pipes, J. Acoust. Soc. Am. 95, 1119–1132 (1994)CrossRefGoogle Scholar
  7. 8.7
    C. Mahrenholz: Berechnung der Mensuren (Orgelbau-Fachverlag Rensch, Lauffen/Neckar 1987) pp. 35–125Google Scholar
  8. 8.8
    W. Ellerhorst: Handbuch der Orgelkunde (Benzinger, Einsiedeln 1936) pp. 17–19Google Scholar
  9. 8.9
    M.A. Cavaillé-Coll: Sämtliche theoretischen Arbeiten (Jochum, Dornbirn 1982) pp. 126–137Google Scholar
  10. 8.10
    N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1991)CrossRefGoogle Scholar
  11. 8.11
    J. Angster, A. Miklós: Documentation of the sound of a historical pipe organ, Appl. Acoust. 46, 61–82 (1995)CrossRefGoogle Scholar
  12. 8.12
    G.A. Korn, T.M. Korn: Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York 1975)MATHGoogle Scholar
  13. 8.13
    J. Angster, A. Miklós: Intensive courses of organ and church acoustics. Organised at the Fraunhofer Institute of Building Physics in Stuttgart, Germany, https://www.ibp.fraunhofer.de/en/Expertise/Acoustics/Musical-Acoustics.html
  14. 8.14
    B. Fabre, A. Hirschberg, A.P.J. Wijnands: Vortex shedding in steady oscillation of a flue organ pipe, Acust.-Acta Acust. 82, 863–877 (1996)Google Scholar
  15. 8.15
    S. Pitsch, J. Angster, M. Strunz, A. Miklós: Spectral properties of the edge tone of a flue organ pipe, ISMA ’97, Edinburgh 1997) pp. 339–344Google Scholar
  16. 8.16
    J. Angster, G. Paál, W. Garen, A. Miklós: Effect of voicing steps on the stationary spectrum and attack transient of a flue organ pipe. In: ISMA ’97, Edinburgh (1997) pp. 285–294Google Scholar
  17. 8.17
    P.M. Morse, K.U. Ingard: Theoretical Acoustics (McGraw-Hill, New York 1968)Google Scholar
  18. 8.18
    J. Angster, A. Miklós: Sound radiation of open labial organ pipes; the effect of the size of the openings on the formant structure. In: Int. Symp. on Music. Acoust. (ISMA ’98, Leavenworth), Acoust. Soc. Amer and Catgut Ac. Soc., Leavenworth (1998) pp. 267–272Google Scholar
  19. 8.19
    J. Kümmel: Raumakustische Probleme bei der Aufstellung von Orgelpfeifen, Diplomarbeit (Universität Stuttgart, Stuttgart 1994)Google Scholar
  20. 8.20
    A.W. Nolle: Theoretical Acoustics. Flue organ pipes: Adjustments affecting steady waveform, J. Acoust. Soc. Am. 73, 1821–1832 (1983)CrossRefGoogle Scholar
  21. 8.21
    G. Paál, J. Angster, W. Garen, A. Miklós: Sound and flow in the mouth of flue organ pipes. Part I: Fully developed state. In: ISMA ’97, Edinburgh (1997) pp. 295–301Google Scholar
  22. 8.22
    J. Backus, T.C. Hundley: Wall vibrations in flue organ pipes and their effect on tone, J. Acoust. Soc. Am. 39, 936–945 (1965)CrossRefGoogle Scholar
  23. 8.23
    J. Angster, G. Paál, W. Garen, A. Miklós: The effect of wall vibrations on the timbre of organ pipes. In: 16th Int. Congr. Acoust. and 135th Meet. Acoust. Soc. Amer., Seattle, Vol. 2 (1998) pp. 753–754Google Scholar
  24. 8.24
    J. Angster, Z. Dubovski, S. Pitsch, A. Miklós: Impact of the material on the sound of flue organ pipes (acoustic and vibration investigations with modern measuring techniques). In: Analysis and Description of Music Instruments Using Engineering Methods, ed. by C. Birnbaum (Stiftung Händel-Haus, Halle (Saale) 2011) pp. 34–41Google Scholar
  25. 8.25
    J. Angster, I. Bork, A. Miklós, K. Wogram: The investigation of the vibrations of an open cylindrical organ flue pipe. In: 9th FASE Symp. and 1Oth Hung. Conf. Acoust., Balatonfüred (1991)Google Scholar
  26. 8.26
    M.A. Mironov: Parametric instability of a circular shell propagating a Korteweg wave, Acoust. Phys. 41, 707–711 (1995)Google Scholar
  27. 8.27
    M.P. Verge: Aeroacoustics of Confined Jets with Applications to the Physical Modelling of Recorder-Like Instruments, Ph.D. Thesis (University of Eindhoven, Eindhoven 1995)Google Scholar
  28. 8.28
    S. Pitsch: Schneidentonuntersuchungen an einem Orgelpfeifen-Fußmodell mittels Wasserkanal- und akustischen Messungen, Diplomarbeit (Universität Stuttgart, Stuttgart 1996)Google Scholar
  29. 8.29
    M. Castellengo: Acoustical analysis of initial transients in flute like instruments, Acustica 85(3), 387–400 (1999)Google Scholar
  30. 8.30
    A. Powell: On the edgetone, J. Acoust. Soc. Am. 33, 395–409 (1961)CrossRefGoogle Scholar
  31. 8.31
    D.G. Crighton: The edgetone feedback cycle; linear theory for the operating stages, J. Fluid. Mech. 234, 361–391 (1992)MathSciNetCrossRefGoogle Scholar
  32. 8.32
    W.K. Blake, A. Powell: The development of a contemporary view of flow tone generation. In: Recent Advances in Aeroacoustics, ed. by A. Krothapalli, C.A. Smith (Springer, New York 1983)Google Scholar
  33. 8.33
    M.S. Howe: The role of displacement thickness fluctuations in hydroacoustics and the jet-drive mechanism of the flue organ pipe, Proc. R. Soc. Lond. A 374, 543–568 (1981)CrossRefGoogle Scholar
  34. 8.34
    N. Zagyva: Computer Modelling of the Onset of the Sound of Flue Organ Pipes, MSc Thesis (ELTE University Budapest, Budapest 1993), in HungarianGoogle Scholar
  35. 8.35
    J. Angster, J. Angster, A. Miklós: Über die Messungen während des Intonationsprozesses Lippenpfeifen der Orgel, Instrumentenbau–Zeitschrift 45, 71–76 (1991)Google Scholar
  36. 8.36
    J. Angster, S. Pitsch, A. Miklós: Vergleich der subjektiven und objektiven Beurteilungen des Orgelpfeifenklangs. In: Fortschritte der Akustik – DAGA’97, ed. by P. Wille (DEGA, Kiel 1997) pp. 303–304Google Scholar
  37. 8.37
    J. Angster, A. Miklós: End-correction of open flue organ pipes. In: Fortschritte der Akustik DAGA’92, Berlin (1992) pp. 260–263Google Scholar
  38. 8.38
    J. Angster, A. Miklos: Transient sound spectra of a variable length organ pipe. In: Int. Symp. on Music. Acoust., Tokyo (1992) pp. 159–162Google Scholar
  39. 8.39
    V. Rioux, D. Västfjäll, M.Z. Yokota, M. Kleiner: Noise quality of transient sounds: Perception of ‘‘hiss’’ and ‘‘cough’’ in a flue organ pipe, Acust.-Acta Acust. 85, 76 (1999)Google Scholar
  40. 8.40
    A. Miklós, J. Angster: Properties of the Sound of Flue Organ Pipes, Acta Acust. united Acust. 86, 611–622 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.AcousticsFraunhofer Institute of Building Physics (IBP)StuttgartGermany
  2. 2.Steinbeis Transfer Center Applied AcousticsStuttgartGermany

Personalised recommendations