Measurement Techniques

Part of the Springer Handbooks book series (SPRINGERHAND)

Abstract

The measurements normally required to understand the physics of musical instruments, including the human voice, usually fall into one of three categories: measuring the airborne sound, measuring the deflection of the surface of an instrument, or measuring the input impedance. This chapter introduces the most common measurement techniques that provide information on these three physical parameters with an emphasis on the first two, which are the measurements most commonly desired by musical acousticians. The chapter begins with a discussion of airborne sound and how it is sensed. Specifically, several types of microphones are introduced followed by a discussion of some of the techniques that rely on sensing by microphones. A review of the techniques for measuring and visualizing deflection shapes is then presented. These techniques range from observing nodal lines using simple Chladni patterns to visualizing deflection shapes using electronic speckle pattern interferometry. The topic of impedance measurement is addressed next, with discussions of both measurements of the input impedance of wind instruments and the measurement of mechanical impedance. This review is not meant to be a complete analysis of each measurement technique. Instead, it is meant to serve as an introduction to the most commonly used techniques and provide references for the interested reader to pursue further study. The advent of new technologies continually changes the equipment that is available to the scientist, but the underlying physical principles remain relevant.

BIAS

brass instrument analysis system

CCD

charge-coupled device

DESPI

decorrelated electronic speckle pattern interferometry

ESPI

electronic speckle pattern interferometry

FRF

frequency response function

LDV

laser Doppler vibrometry

MEMS

micro-electric mechanical system

NAH

near-field acoustic holography

References

  1. 5.1
    D.R. Raichel: The Science and Applications of Acoustics (Springer, New York 2000) pp. 168–175Google Scholar
  2. 5.2
    L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders: Fundamentals of Acoustics, 4th edn. (Wiley, New York 2000) pp. 416–428Google Scholar
  3. 5.3
    M.W. Hoffman, C. Pinkelman, X.F. Lu, Z. Li: Real-time and off-line comparisons of standard array configurations containing three and four microphones, J. Acoust. Soc. Am. 107, 3560–3563 (2000)CrossRefGoogle Scholar
  4. 5.4
    R. Streicher, W. Dooley: Basic stereo microphone perspectives-a review, J. Audio Eng. Soc. 33, 548–556 (1985)Google Scholar
  5. 5.5
    M. Park, B. Rafaely: Sound-field analysis by plane-wave decomposition using spherical microphone array, J. Acoust. Soc. Am. 118, 3094–3103 (2005)CrossRefGoogle Scholar
  6. 5.6
    N. Huleihel, B. Rafaely: Spherical array processing for acoustic analysis using room impulse responses and time-domain smoothing, J. Acoust. Soc. Am. 133, 3395–4007 (2013)CrossRefGoogle Scholar
  7. 5.7
    E.G. Williams, J.D. Maynard: Holographic imaging without the wavelength resolution limit, Phys. Rev. Lett. 45, 554–557 (1980)CrossRefGoogle Scholar
  8. 5.8
    E.G. Williams: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (Academic, London 1999)Google Scholar
  9. 5.9
    J.D. Maynard, E.G. Williams, Y. Lee: Nearfield acoustic holography: I. Theory of generalized hologrphy and the development of NAH, J. Acoust. Soc. Am. 78, 1395–1413 (1985)CrossRefGoogle Scholar
  10. 5.10
    S. Dumbacher, D. Brown, J. Blough, R. Bono: Practical aspects of making NAH measurements. In: Proc. Noise and Vibration Conference and Exposition, Warrendale (1999)Google Scholar
  11. 5.11
    F. Muddeen, B. Copeland: Sound radiation from caribbean steelpans using nearfiled acoustical holography, J. Acoust. Soc. Am. 131, 1558–1595 (2012)CrossRefGoogle Scholar
  12. 5.12
    L.M. Wang, C.B. Burroughs: Acoustic radiation from bowed violins, J. Acoust. Soc. Am. 110, 543–555 (2001)CrossRefGoogle Scholar
  13. 5.13
    J. Benesty, J. Chen, Y. Huang (Eds.): Microphone Array Signal Processing (Springer, Berlin, Heidelberg 2008)Google Scholar
  14. 5.14
    M. Brandstein, D. Ward (Eds.): Microphone Arrays: Signal Processing Techniques and Applications (Springer, New York 2001)Google Scholar
  15. 5.15
    M.B.S. Magalhães, R.A. Tenenbaum: Sound sources reconstruction techniques: A review of their evolution and new trends, Acta Acust. united with Acust. 90, 199–220 (2004)Google Scholar
  16. 5.16
    G.H. Koopmann, L. Song, J.B. Fahnline: A method for computing acoustic fields based on the principle of wave superposition, J. Acoust. Soc. Am. 86, 2433–2438 (1989)CrossRefGoogle Scholar
  17. 5.17
    R. Bader: Microphone Arrays (Springer, Berlin, Heidelberg 2014)CrossRefGoogle Scholar
  18. 5.18
    R. Bader: Radiation characteristics of multiple and single sound hole vihuelas and a classical guitar, J. Acoust. Soc. Am. 131, 819–827 (2012)CrossRefGoogle Scholar
  19. 5.19
    R. Bader: Reconstruction of radiating sound fields using minimum energy method, J. Acoust. Soc. Am. 127, 300–308 (2010)CrossRefGoogle Scholar
  20. 5.20
    T. Rossing: Chladni’s law for vibrating plates, Am. J. Phys. 50, 271–274 (1982)CrossRefGoogle Scholar
  21. 5.21
    D. Waller: Chladni Figures: A Study in Symmetry (Bell, London 1961)MATHGoogle Scholar
  22. 5.22
    T.R. Moore, A.E. Cannaday, S.A. Zietlow: A simple and inexpensive optical technique to help students visualize mode shapes, J. Acoust. Soc. Am. 131, 2480–2487 (2012)CrossRefGoogle Scholar
  23. 5.23
    J.R. Comer, M.J. Shepard, P.N. Henriksen, R.D. Ramsier: Chladni plates revisited, Am. J. Phys. 72, 1345–1346 (2004)CrossRefGoogle Scholar
  24. 5.24
    H.A. Conklin: Design and tone in the mechanoiacoustic piano. Part II. Piano structure, J. Acoust. Soc. Am. 100, 695–708 (1996)CrossRefGoogle Scholar
  25. 5.25
    N.E. Molin, L.E. Lindgren, E.V. Jansson: Parameters of violin plates and their influence on the plate modes, J. Acoust. Soc. Am. 83, 281–291 (1988)CrossRefGoogle Scholar
  26. 5.26
    P.G.M. Richardson, E.R. Toulson, D.J.E. Nunn: Analysis and manipulation of modal ratios of cylindrical drums, J. Acoust. Soc. Am. 131, 907–913 (2012)CrossRefGoogle Scholar
  27. 5.27
    T.D. Rossing, A. Perrier: Modal analysis of a Korean bell, J. Acoust. Soc. Am. 94, 2431–2433 (1993)CrossRefGoogle Scholar
  28. 5.28
    T. Rossing, I. Bork, H. Zhao, D.O. Fystrom: Acoustics of snare drums, J. Acoust. Soc. Am. 92, 84–94 (1992)CrossRefGoogle Scholar
  29. 5.29
    T.J. Hill, B.E. Richardson, S.J. Richardson: Acoustical parameters for the characterization of the classical guitar, Acta Acust. united with Acust. 90, 335–348 (2004)Google Scholar
  30. 5.30
    M.L. Facchinetti, X. Boutillon, A. Constantinescu: Numerical and experimental modal analysis of the reed and pipe of a clarinet, J. Acoust. Soc. Am. 113, 2874–2883 (2003)CrossRefGoogle Scholar
  31. 5.31
    G. Jundt, A. Radu, E. Fort, J. Duda, H. Vach, N. Fletcher: Vibrational modes of partly filled wine glasses, J. Acoust. Soc. Am. 119, 3793–3798 (2006)CrossRefGoogle Scholar
  32. 5.32
    R. Jones, C. Wykes: Holographic and Speckle Pattern Interferometry (Cambridge Univ. Press, Cambridge 1989)CrossRefGoogle Scholar
  33. 5.33
    B. Richardson: The acoustical development of the guitar, J. Catgut Acoust. Soc. 2, 1–10 (1994)Google Scholar
  34. 5.34
    G.M. Brown, R.M. Grant, G.W. Stroke: Theory of holographic interferometry, J. Acoust. Soc. Am. 45, 1166–1179 (1969)CrossRefGoogle Scholar
  35. 5.35
    B. Copeland, A. Morrison, T. Rossing: Sound radiation from caribbean steelpans, J. Acoust. Soc. Am. 117, 375–383 (2005)CrossRefGoogle Scholar
  36. 5.36
    L.A. Stephey, T.R. Moore: Experimental investigation of an american five-string banjo, J. Acoust. Soc. Am. 124, 3276–3283 (2008)CrossRefGoogle Scholar
  37. 5.37
    T.R. Moore, J.D. Kaplon, G.D. McDowall, K.A. Martin: Vibrational modes of trumpet bells, J. Sound Vib. 254, 777–786 (2002)CrossRefGoogle Scholar
  38. 5.38
    R. Worland: Normal modes of a musical drumhead under non-uniform tension, J. Acoust. Soc. Am. 127, 525–533 (2010)CrossRefGoogle Scholar
  39. 5.39
    A.E. Cannaday, B.C. August, T.R. Moore: Tuning the nigerian slit gong, J. Acoust. Soc. Am. 131, 1566–1573 (2012)CrossRefGoogle Scholar
  40. 5.40
    B.M. Deutsch, C.L. Ramirez, T.R. Moore: The dynamics and tuning of orchestral crotales, J. Acoust. Soc. Am. 116, 2427–2433 (2004)CrossRefGoogle Scholar
  41. 5.41
    R. Worland: Musical acoustics of orchestral water crotales, J. Acoust. Soc. Am. 131, 935–944 (2012)CrossRefGoogle Scholar
  42. 5.42
    T.R. Moore, S.A. Zietlow: Interferometric studies of a piano soundboard, J. Acoust. Soc. Am. 119, 1783–1793 (2006)CrossRefGoogle Scholar
  43. 5.43
    A.E. Ennos: Speckle Interferometry (Springer, New York 1984) pp. 203–253, ed. by C. DaintyGoogle Scholar
  44. 5.44
    T.R. Moore, J.J. Skubal: Time-averaged electronic speckle pattern interferometry in the presence of ambient motion. Part 1. Theory and experiments, Appl. Opt. 47, 4640–4648 (2008)CrossRefGoogle Scholar
  45. 5.45
    T.R. Moore: A simple design for an electronic speckle pattern interferometer, Am. J. Phys. 72, 1380–1384 (2004)CrossRefGoogle Scholar
  46. 5.46
    T.R. Moore: A simple design for an electronic speckle pattern interferometer, Am. J. Phys. 73, 189 (2005)CrossRefGoogle Scholar
  47. 5.47
    Y. Yeh, H.Z. Cummins: Localized fluid flow measurements with an he-ne laser spectrometer, Appl. Phys. Lett. 4, 176–178 (1964)CrossRefGoogle Scholar
  48. 5.48
    T. Ryan, P. O’Malley, J. Vignola, J. Judge: Conformal scanning laser doppler vibrometer measurement of tenor steelpan response to impluse excitation, J. Acoust. Soc. Am. 132, 3494–3501 (2012)CrossRefGoogle Scholar
  49. 5.49
    E. Skrodzka, A. Lapa, B.B. Linde, E. Rosenfeld: Modal parameters of two incomplete and complete guitars differing in the bracing pattern of the soundboard, J. Acoust. Soc. Am. 130, 2186–2194 (2011)CrossRefGoogle Scholar
  50. 5.50
    V. Chatziioannou, W. Kausel, T. Moore: The effect of wall vibrations on the air column inside trumpet bells. In: Proc. Acoustics Nantes Conf. EAA, Nantes (2012) pp. 2243–2248Google Scholar
  51. 5.51
    E. De Lauro, S. De Martino, E. Esposito, M. Falanga, E.P. Tomasini: Analogical model for mechanical vibrations in flue organ pipes inferred by independent component analysis, J. Acoust. Soc. Am. 122, 2413–2424 (2007)CrossRefGoogle Scholar
  52. 5.52
    E. Hecht: Optics, 4th edn. (Addison Wesley, San Francisco 2002) pp. 560–578Google Scholar
  53. 5.53
    L.E. Lyshevski: MEMS and NEMS: Systems, Devices and Structures (CRC, Boca Raton 2001)Google Scholar
  54. 5.54
    H. Suzuki: Vibration and sound radiation of a piano soundboard, J. Acoust. Soc. Am. 80, 1573–1582 (1986)CrossRefGoogle Scholar
  55. 5.55
    J. Berthaut, M.N. Ichchou, L. Jézéquel: Piano soundboard: structural behavior, numerical and experimental study in the modal range, Appl. Acoust. 64, 1113–1136 (2003)CrossRefGoogle Scholar
  56. 5.56
    O. Inácio, L.L. Henrique, J. Antunes: The dynamics of tibetan singing bowls, Acta Acust. united with Acust. 92, 637–653 (2006)Google Scholar
  57. 5.57
    C. Waltham, A. Kotlicki: Vibrational characteristics of harp soundboards, J. Acoust. Soc. Am. 124, 1774–1780 (2008)CrossRefGoogle Scholar
  58. 5.58
    D.J. Ewins: Modal Testing: Theory, Practice and Application (Research Studies, Baldock 2000) pp. 25–286Google Scholar
  59. 5.59
    A.H. Benade, M.I. Ibisi: Survey of impedance methods and a new piezo-disk-driven impedance head for air columns, J. Acoust. Soc. Am. 81, 1152–1167 (1987)CrossRefGoogle Scholar
  60. 5.60
    J.C. Webster: An electrical method of measuring the intonation of cup-mouthpiece instruments, J. Acoust. Soc. Am. 19, 902–906 (1947)CrossRefGoogle Scholar
  61. 5.61
    J. Agulló, J. Badrinas: Improving the accuracy of the cappillary based technique for measuring the acoustic impedance of wind instruments, Acustica 59, 76–83 (1985)Google Scholar
  62. 5.62
    W. Kausel: Bore reconstruction of tubular ducts from its acoustic input impedance curve. In: Proc. IEEE Instrument Measurement Technol. Conf., New York (2003) pp. 993–998Google Scholar
  63. 5.63
    S. Elliott, J. Bowsher, P. Watkinson: Input and transfer response of brass wind instruments, J. Acoust. Soc. Am. 72, 1747–1760 (1982)CrossRefGoogle Scholar
  64. 5.64
    J.Y. Chung, D.A. Blaser: Transfer function method of measurring in-duct acoustic properties I. Theory, J. Acoust. Soc. Am. 68, 907–913 (1980)CrossRefGoogle Scholar
  65. 5.65
    J.Y. Chung, D.A. Blaser: Transfer function method of measurring in-duct acoustic properties II. Experiment, J. Acoust. Soc. Am. 68, 914–921 (1980)CrossRefGoogle Scholar
  66. 5.66
    V. Gibiat, F. Laloë: Acoustical impedance measurements by the two-microphone-three-calibration (TMTC) method, J. Acoust. Soc. Am. 88, 2533–2545 (1990)CrossRefGoogle Scholar
  67. 5.67
    P.-P. Dalmont: Acoustic impedance measurement, Part I: A review, J. Sound. Vib. 243, 427–439 (2001)CrossRefGoogle Scholar
  68. 5.68
    M. van Walstijn, D.M. Campbell, J. Kemp, D. Sharp: Wideband measurement of the acoustic impedance of tubular objects, Acta Acust. united with Acust. 91, 590–604 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Dept. of PhysicsRollins CollegeWinter ParkUSA

Personalised recommendations