Construction of Wooden Musical Instruments
Abstract
This work aims to provide an overview of why and how wood is used in musical instruments, primarily strings, woodwind and percussion. The introduction is a description of the desirable properties of a musical instrument and how these relate to the physical properties of wood. A summary is given of the most important woods mentioned in this chapter, including common and Latin names. Section 4.2 discusses the physical properties of woods most relevant to musical instruments and how they relate to their biological taxonomy and also to organology. Sections 4.3 and 4.4 are devoted respectively to woods that make up the acoustically radiant parts of instruments (tonewoods), and those whose function is to transmit vibrations from one part to another, or are simply structural (framewoods). Section 4.5 deals with how the wood is selected, prepared, assembled into an instrument, and finished.
- 2-D
two-dimensional
- ACE
acoustic conversion efficiency
References
- 4.1I.R. Titze, J. Sundberg: Vocal intensity in speakers and singers, J. Acoust. Soc. Am. 91, 2936–2976 (1992)CrossRefGoogle Scholar
- 4.2S. Yoshikawa: Acoustical classification of woods for string instruments, J. Acoust. Soc. Am. 122, 568–573 (2007)CrossRefGoogle Scholar
- 4.3T. Ono: Transient response of wood for musical instruments and its mechanism in vibrational property, J. Acoust. Soc. Jpn. (E) 12, 117–124 (1999)CrossRefGoogle Scholar
- 4.4T. Ono, S. Miyakoshi, U. Watanabe: Acoustic characteristics of unidirectionally fiber-reinforced polyurethane foam composites for musical instrument soundboards, Acoust. Sci. Technol. 23, 135–142 (2001)CrossRefGoogle Scholar
- 4.5J. Schelleng: The violin as a circuit, J. Acoust. Soc. Am. 35, 326–338 (1963)CrossRefGoogle Scholar
- 4.6D.E. Kretschmann: Mechanical properties of wood. In: The Wood Handbook, ed. by R.J. Ross (US Department of Agriculture, Madison 2010)Google Scholar
- 4.7E. Fukada: The vibration properties of wood I, J. Phys. Soc. Japan 5, 321–327 (1950)CrossRefGoogle Scholar
- 4.8I. Barducci, G. Pasqualini: Measurement of the internal friction and the elastic constants of wood, Nuovo Cimento 5, 416–466 (1948)CrossRefGoogle Scholar
- 4.9V. Bucur: Wood species for musical instruments. In: Acoustics of Wood, ed. by V. Bucur (Springer, Berlin 2006)Google Scholar
- 4.10M.E. McIntyre, J. Woodhouse: On measuring the elastic and damping constants of orthotropic sheet materials, Acta Metallurg. 36, 1397–1416 (1988)CrossRefGoogle Scholar
- 4.11R.B. Hoadley: Identifying Wood (Stevens, Newtown 1990)Google Scholar
- 4.12I.M. Firth, A.S. Bell: The acoustical effects of wood veneer, Acustica 66, 114–116 (1988)Google Scholar
- 4.13T. Gunji, E. Obataya, K. Aoyama: Vibrational properties of harp soundboard with respect to its multi-layered structure, J. Wood Sci. 58, 322–326 (2012)CrossRefGoogle Scholar
- 4.14W. Liese: The Anatomy of Bamboo Culms (International Network for Bamboo and Rattan, Beijing 1998)Google Scholar
- 4.15U.G.K. Wegst: Bamboo and wood in musical instruments, Annu. Rev. Mater. Res. 38, 323–349 (2008)CrossRefGoogle Scholar
- 4.16D.W. Haines: On musical instrument wood, Catgut Acoust. Soc. Newsl. 31, 23–32 (1979)Google Scholar
- 4.17C.Y. Barlow: Materials selection for musical instruments, Acoust. Aust. 19, 69–78 (1997)Google Scholar
- 4.18I. Brémaud: Personal communication (2007)Google Scholar
- 4.19U.G.K. Wegst, S. Oberhoff, M. Weller, M.F. Ashby: Materials for violin bows, Int. J. Mater. Res. 12, 1230–1237 (2007)CrossRefGoogle Scholar
- 4.20S. Yoshikawa, M. Shinoduka, T. Senda: A comparison of string instruments based on wood properties: Biwa versus cello, Acoust. Sci. Technol. 29, 41–50 (2008)CrossRefGoogle Scholar
- 4.21E. Obataya: Personal communication (2013)Google Scholar
- 4.22H. Aizawa, E. Obataya, T. Ono, M. Norimoto: Acoustic converting efficiency and anisotropic nature of wood, Wood Res. 85, 81–83 (1998)Google Scholar
- 4.23J.J.A. Janssen: The mechanical properties of bamboo used in construction. In: Bamboo Research in Asia, ed. by G. Lessard, A. Chouinard (International Development Research Centre, Ottawa 1980)Google Scholar
- 4.24Y. Kubojima, Y. Inokuchi, Y. Suzuki, M. Tonosaki: Shear modulus of several kinds of japanese bamboo obtained by flexural vibration test, J. Wood Sci. 56, 64–70 (2010)CrossRefGoogle Scholar
- 4.25B.A. Yankovskii: Dissimilarity of the acoustic parameters of unseasoned and aged wood, Sov. Phys. Acoust. 13, 125–127 (1967)Google Scholar
- 4.26E. Obataya, T. Ono, M. Norimoto: Vibrational properties of wood along the grain, J. Mater. Sci. 35, 2993–3001 (2000)CrossRefGoogle Scholar
- 4.27H. Aizawa: Frequency Dependence of Vibration Properties of Wood in the Longitudinal Direction (Kyoto Univ, Kyoto 1998)Google Scholar
- 4.28T.D. Rossing, J. Yoo, A. Morrison: Acoustics of percussion instruments: An update, Acoust. Sci. Technol. 25, 406–412 (2004)CrossRefGoogle Scholar
- 4.29I. Bork: Practical tuning of xylophone bars and resonators, Appl. Acoust. 46, 103–127 (1995)CrossRefGoogle Scholar
- 4.30H.F. Meinel: Regarding the sound quality of violins and a scientific basis for violin construction, J. Acoust. Soc. Am. 29, 817–822 (1957)CrossRefGoogle Scholar
- 4.31N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1998)CrossRefGoogle Scholar
- 4.32E. Meyer, E.G. Neumann: Physical and Applied Acoustics (Academic, New York 1972) pp. 14–22Google Scholar
- 4.33A.H. Benade: Fundamentals of Musical Acoustics (Oxford Univ. Press, New York 1976)Google Scholar
- 4.34C. Gough: Musical acoustics. In: Handbook of Acoustics, ed. by T. Rossing (Springer, New York 2007)Google Scholar
- 4.35I.M. Firth: Acoustics of the harp, Acustica 37, 148–154 (1977)Google Scholar
- 4.36S. Daltrop, C.E. Waltham, A. Kotlicki: Vibro-acoustic characteristics of an aoyama amphion concert harp, J. Acoust. Soc. Am. 128, 466–473 (2010)CrossRefGoogle Scholar
- 4.37F. Fahy, P. Gardonio: Sound and Structural Vibration (Academic, Amsterdam 2007)Google Scholar
- 4.38E.B. Davis: Designing soundboards with flexural disk models, Proc. Meet. Acoust. 12, 035003 (2012)CrossRefGoogle Scholar
- 4.39O. Christensen, B.B. Vistinen: Simple model for low frequency guitar function, J. Acoust. Soc. Am. 68, 758–766 (1980)CrossRefGoogle Scholar
- 4.40A. Askenfelt: Double bass. In: The Science of String Instruments, ed. by T.D. Rossing (Springer, New York 2010)Google Scholar
- 4.41G. Weinreich: What science knows about violins, and what it does not know, Am. J. Phys. 61, 1067–1077 (1993)CrossRefGoogle Scholar
- 4.42J. Schelleng: Erratum: The violin as a circuit, J. Acoust. Soc. Am. 35, 1291 (1963)CrossRefGoogle Scholar
- 4.43J. Curtin, T.D. Rossing: Violin. In: The Science of String Instruments, ed. by T.D. Rossing (Springer, New York 2010)Google Scholar
- 4.44C.E. Waltham: Harp. In: The Science of String Instruments, ed. by T.D. Rossing (Springer, New York 2010)Google Scholar
- 4.45S. Daltrop, C.E. Waltham, A. Kotlicki, F. Gautier, B. Elie: Vibroacoustic characteristics of a gothic harp, J. Acoust. Soc. Am. 131, 837–843 (2012)CrossRefGoogle Scholar
- 4.46E. Obataya, H. Akahoshi: Personal communication (2013)Google Scholar
- 4.47L.J. Gibson, M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge Univ. Press, New York 1988)MATHGoogle Scholar
- 4.48S. Yoshikawa: Plucked string instruments in Asia. In: The Science of String Instruments, ed. by T.D. Rossing (Springer, New York 2010)Google Scholar
- 4.49A. Baines: The Oxford Companion to Musical Instruments (Oxford Univ. Press, New York 1992)Google Scholar
- 4.50E. Obataya, H. Yamauchi: Applicability of laminated veneer cylinder to sustainable production of woodwind instruments. In: Proc. 2012 IUFRO (International Union of Forest Reserch Organisation, Copenhagen 2012)Google Scholar
- 4.51I.M. Firth: Harps of the baroque period, J. Catgut Acoust. Soc. 1(II), 52–61 (1989)Google Scholar
- 4.52T. Ono, I. Takahashi, Y. Takasu, Y. Miura, U. Watanabe: Acoustic characteristics of wadaiko (traditional Japanese drum) with wood plastic shell, Acoust. Sci. Technol. 30, 410–416 (2009)CrossRefGoogle Scholar
- 4.53S. Simura: An Organology of Kokan Syakuhati (Old Pipe Syakuhati) (Shuppan-geijutsu-sha, Tokyo 2002)Google Scholar
- 4.54E. Obataya, Y. Ohno, M. Norimoto, B. Tomita: Effects of oriental lacquer (urushi) coating on the vibrational properties of wood used for the soundboards of musical instruments, Acoust. Sci. Technol. 22, 27–34 (2001)CrossRefGoogle Scholar
- 4.55S. Yamaguchi: Personal communication (2013)Google Scholar
- 4.56Y. Ando: Acoustics of Musical Instruments (Ongaku-no-tomo-sha, Tokyo 1996)Google Scholar
- 4.57R.B. Hoadley: Understanding Wood (Taunton, Newtown 2000)Google Scholar
- 4.58T. Noguchi, E. Obataya, K. Ando: Effects of aging on the vibrational properties of wood, J. Cultural Herit. 13S, S21–S25 (2012)CrossRefGoogle Scholar
- 4.59C. Fritz, J. Curtin, J. Poitevineau, P. Morrel-Samuels, F.-C. Taoi: Player preference among new and old violins, PNAS 109, 760–763 (2012)CrossRefGoogle Scholar
- 4.60A. Thrasher: Personal communication (2013)Google Scholar
- 4.61J. Curtin: Tap tones and weights of old violin tops, J. Violin Soc. Am. 20, 161–173 (2006)Google Scholar
- 4.62E. Jansson: Acoustics for Violin and Guitar Makers, www.speech.kth.se/music/acviguit4/ (2013)
- 4.63A. Pizzi: Advanced Wood Adhesives Technology (Dekker, New York 1994)Google Scholar
- 4.64E.M. Petrie: Handbook of Adhesives and Sealants (McGraw Hill, New York 2007)Google Scholar
- 4.65H.A. Strobel: Violin Making Step by Step (Strobel, Oregon 1994)Google Scholar
- 4.66G. Fry: The Varnishes of the Italian Violin Makers of the 16th and 17th Centuries and Their Influence on Tone (Stevens, London 1904)Google Scholar
- 4.67C.Y. Barlow, J. Woodhouse: Of old wood and varnish: Peering into the can of worms, J. Catgut Acoust. Soc. 1, 2–9 (1989)Google Scholar
- 4.68J. Schelleng: Acoustical effects of violin varnish, J. Acoust. Soc. Am. 44, 1176–1183 (1968)CrossRefGoogle Scholar
- 4.69C.E. Waltham: The acoustics of harp soundboxes, Am. Harp J. 22, 26–31 (2010)Google Scholar
- 4.70C. Hutchins, D. Voskuil: Mode tuning for the violin maker, Catgut Acoust. Soc. 2(4), 5–9 (1993)Google Scholar