Musical Syntax I: Theoretical Perspectives

Part of the Springer Handbooks book series (SPRINGERHAND)

Abstract

The understanding of musical syntax is a topic of fundamental importance for systematic musicology and lies at the core intersection of music theory and analysis, music psychology, and computational modeling. This chapter discusses the notion of musical syntax and its potential foundations based on notions such as sequence grammaticality, expressive unboundedness, generative capacity, sequence compression and stability. Subsequently, it discusses problems concerning the choice of musical building blocks to be modeled as well as the underlying principles of sequential structure building. The remainder of the chapter reviews the main theoretical proposals that can be characterized under different mechanisms of structure building, in particular approaches using finite-context or finite-state models as well as tree-based models of context-free complexity (including the Generative Theory of Tonal Music) and beyond. The chapter concludes with a discussion of the main issues and questions driving current research and a preparation for the subsequent empirical chapter Musical Syntax II.

ATN

augmented transition network

EMI

experiments in musical intelligence

GTTM

generative theory of tonal music

HMM

hidden Markov model

MDL

minimum description length

References

  1. 25.1
    M. Steedman: The blues and the abstract truth: Music and mental models. In: Mental Models in Cognitive Science, ed. by A. Garnham, J. Oakhill (Erlbaum, Mahwah 1996) pp. 305–318Google Scholar
  2. 25.2
    M.T. Pearce, M. Rohrmeier: Music cognition and the cognitive sciences, Top. Cogn. Sci. 4(4), 468–484 (2012)CrossRefGoogle Scholar
  3. 25.3
    M. Christiansen, N. Chater: Toward a connectionist model of recursion in human linguistic performance, Cogn. Sci. 23, 157–205 (1999)CrossRefGoogle Scholar
  4. 25.4
    D. Sudnow: Ways of the Hand: The Organization of Improvised Conduct (MIT Press, Cambridge 1978)Google Scholar
  5. 25.5
    M.T. Pearce, G.A. Wiggins: Auditory expectation: The information dynamics of music perception and cognition, Top. Cogn. Sci. 4(4), 625–652 (2012),  https://doi.org/10.1111/j.1756-8765.2012.01214.x CrossRefGoogle Scholar
  6. 25.6
    M. Rohrmeier, P. Rebuschat: Implicit learning and acquisition of music, Top. Cogn. Sci. 4(4), 525–553 (2012),  https://doi.org/10.1111/j.1756-8765.2012.01223.x CrossRefGoogle Scholar
  7. 25.7
    R.C. Berwick, A.D. Friederici, N. Chomsky, J.J. Bolhuis: Evolution, brain, and the nature of language, Trends Cogn. Sci. 17(2), 91–100 (2013),  https://doi.org/10.1016/j.tics.2012.12.002 CrossRefGoogle Scholar
  8. 25.8
    E. Aldwell, C. Schachter: Harmony & Voice Leading (Thomson Schirmer, New York 2003)Google Scholar
  9. 25.9
    I. Cross: Cognitive science and the cultural nature of music, Top. Cogn. Sci. 4(4), 668–677 (2012)CrossRefGoogle Scholar
  10. 25.10
    J. Kippen, B. Bel: Modelling music with grammars. In: Computer Representations and Models in Music, ed. by A. Marsden, A. Pople (Academic Press, London 1992) pp. 207–238Google Scholar
  11. 25.11
    S. Marcus: The Eastern Arab system of melodic modes: A case study of Maqam Bayyati. In: The Garland Encyclopedia of World Music. The Middle East (Routledge, New York 2003) pp. 33–44Google Scholar
  12. 25.12
    D.R. Widdess: Aspects of form in North Indian ālāp and dhrupad. In: Music and Tradition: Essays on Asian and Other Musics Presented to Laurence Picken (Cambridge Univ. Press, Cambridge 1981) pp. 143–182Google Scholar
  13. 25.13
    A. Sorace, F. Keller: Gradience in linguistic data, Lingua 115(11), 1497–1524 (2005)CrossRefGoogle Scholar
  14. 25.14
    B. Aarts: Fuzzy Grammar: A Reader (Oxford Univ. Press, Oxford 2004)Google Scholar
  15. 25.15
    B. Aarts: Syntactic Gradience: The Nature of Grammatical Indeterminacy (Oxford Univ. Press, Oxford 2007)Google Scholar
  16. 25.16
    W. Caplin: Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn, Mozart, and Beethoven (Oxford Univ. Press, New York, Oxford 1998)Google Scholar
  17. 25.17
    E. Aldwell, C. Schachter: Harmony and Voice Leading, 2nd edn. (Harcourt Brace Jovanovich, San Diego 1989)Google Scholar
  18. 25.18
    N. Chomsky: Syntactic Structures (Mouton, The Hague 1957)MATHGoogle Scholar
  19. 25.19
    N. Chomsky: Aspects of the Theory of Syntax (MIT Press, Cambridge 1965)Google Scholar
  20. 25.20
    N. Chater: Reconciling simplicity and likelihood principles in perceptual organisation, Psychol. Res. 103, 566–581 (1996)Google Scholar
  21. 25.21
    N. Chater, P. Vitanyi: The generalized universal law of generalization, J. Math. Psychol. 47, 346–369 (2003)MathSciNetCrossRefGoogle Scholar
  22. 25.22
    D.J.C. MacKay: Information Theory, Inference and Learning Algorithms (Cambridge Univ. Press, Cambridge 2003)MATHGoogle Scholar
  23. 25.23
    R. Cilibrasi, P.M.B. Vitanyi, R. de Wolf: Algorithmic clustering of music based on string compression, Comput. Music J. 28, 49–67 (2004)CrossRefGoogle Scholar
  24. 25.24
    M.M. Marin, H. Leder: Examining complexity across domains: Relating subjective and objective measures of affective environmental scenes, paintings and music, PLoS ONE 8(8), e72412 (2013)CrossRefGoogle Scholar
  25. 25.25
    P.D. Grünwald: The Minimum Description Length Principle (MIT Press, Cambridge 2007)Google Scholar
  26. 25.26
    A. Perfors, J.B. Tenenbaum, T. Regier: The learnability of abstract syntactic principles, Cognition 118(3), 306–338 (2011)CrossRefGoogle Scholar
  27. 25.27
    C. Kemp, J.B. Tenenbaum: The discovery of structural form, Proc. Natl. Acad. Sci. 105(31), 10687–10692 (2008)CrossRefGoogle Scholar
  28. 25.28
    P. Mavromatis: Minimum description length modelling of musical structure, J. Math. Music 3(3), 117–136 (2009)MathSciNetCrossRefGoogle Scholar
  29. 25.29
    S. Kostka, D. Payne: Tonal Harmony (Alfred A. Knopf, New York 1984)Google Scholar
  30. 25.30
    E. Narmour: The Analysis and Cognition of Melodic Complexity: The Implication-Realization Model (University of Chicago Press, Chicago, London 1992)Google Scholar
  31. 25.31
    C.L. Krumhansl: Cognitive Foundations of Musical Pitch (Oxford Univ. Press, Oxford 1990)Google Scholar
  32. 25.32
    B. De Haas, M. Rohrmeier, R. Veltkamp, F. Wiering: Modeling harmonic similarity using a generative grammar of tonal harmony. In: Proc. 10th Int. Soc. Music Inf. Retr. Conf. (ISMIR 2009), Kobe, ed. by K. Hirata, G. Tzanetakis, K. Yoshii (2009) pp. 549–554Google Scholar
  33. 25.33
    S. Koelsch: Towards a neural basis of processing musical semantics, Phys. Life Rev. 8(2), 89–105 (2011)Google Scholar
  34. 25.34
    L.R. Slevc, A.D. Patel: Meaning in music and language: Three key differences: Comment on ``Towards a neural basis of processing musical semantics'' by Stefan Koelsch, Phys. Life Rev. 8(2), 110–111 (2011)Google Scholar
  35. 25.35
    U. Reich: The meanings of semantics: Comment on ’Towards a neural basis of processing musical semantics’ by Stefan Koelsch, Phys. Life Rev. 8(2), 120–121 (2011)Google Scholar
  36. 25.36
    W.T. Fitch, B. Gingras: Multiple varieties of musical meaning: Comment on ``Towards a neural basis of processing musical semantics'' by Stefan Koelsch, Phys. Life Rev. 8(2), 108–109 (2011)Google Scholar
  37. 25.37
    F. Lerdahl: Tonal Pitch Space (Oxford Univ. Press, New York 2001)Google Scholar
  38. 25.38
    M. Rohrmeier: Towards a generative syntax of tonal harmony, J. Math. Music 5(1), 35–53 (2011)CrossRefGoogle Scholar
  39. 25.39
    M. Lehne, M. Rohrmeier, S. Koelsch: Tension-related activity in the orbitofrontal cortex and amygdala: An fMRI study with music, Soc. Cogn. Affect. Neurosci. 9(10), 1515–1523 (2013)CrossRefGoogle Scholar
  40. 25.40
    M. Rohrmeier, W. Zuidema, G.A. Wiggins, C. Scharff: Principles of structure building in music, language and animal song, Phil. Trans. R. Soc. B (2015),  https://doi.org/10.1098/rstb.2014.0097 CrossRefGoogle Scholar
  41. 25.41
    G.J. Balzano: The pitch set as a level of description for studying musical pitch perception. In: Music, Mind and Brain, ed. by M. Clynes (Plenum, New York 1982) pp. 321–351CrossRefGoogle Scholar
  42. 25.42
    L. Euler: Tentamen Novae Theoriae Musicae (Academia Scientiae, St. Petersburg 1739), reprint: Broude Bros., New York 1968Google Scholar
  43. 25.43
    G. Weber: Versuch einer geordneten Theorie der Tonsetzkunst, Vol. 1–4 (Schott, Mainz 1830)Google Scholar
  44. 25.44
    J. Pressing: Cognitive isomorphisms between pitch and rhythm in world musics: West Africa, the Balkans and Western tonality, Stud. Music 17, 38–61 (1983)Google Scholar
  45. 25.45
    H.C. Longuet-Higgins: Letter to a musical friend, Music Rev. 23, 244–248 (1962)Google Scholar
  46. 25.46
    H.C. Longuet-Higgins: Second letter to a musical friend, Music Rev. 23, 271–280 (1962)Google Scholar
  47. 25.47
    R.N. Shepard: Structural representations of musical pitch. In: Psychology of Music, ed. by D. Deutsch (Academic Press, New York 1982) pp. 343–390CrossRefGoogle Scholar
  48. 25.48
    D. Tymoczko: A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice (Oxford Univ. Press, Oxford 2011)Google Scholar
  49. 25.49
    J. London: Hearing in Time (Oxford Univ. Press, Oxford 2004)CrossRefGoogle Scholar
  50. 25.50
    P. Janata, J.L. Birk, J.D. van Horn, M. Leman, B. Tillmann, J.J. Bharucha: The cortical topography of tonal structures underlying Western music, Science 298(5601), 2167–2170 (2002)CrossRefGoogle Scholar
  51. 25.51
    G. Jäger, J. Rogers: Formal language theory: refining the Chomsky hierarchy, Philos. Trans. R. Soc. B 367(1598), 1956–1970 (2012)CrossRefGoogle Scholar
  52. 25.52
    J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages and Computation (Addison-Wesley, Reading 1979)MATHGoogle Scholar
  53. 25.53
    G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages (Springer, New York 1997)MATHGoogle Scholar
  54. 25.54
    G. Wiggins: Computer models of (music) cognition. In: Language and Music as Cognitive Systems, ed. by P. Rebuschat, M. Rohrmeier, I. Cross, J. Hawkins (Oxford Univ. Press, Oxford 2012) pp. 169–188Google Scholar
  55. 25.55
    M.A. Rohrmeier, S. Koelsch: Predictive information processing in music cogntion. A critical review, Int. J. Psychophysiol. 83(2), 164–175 (2012)CrossRefGoogle Scholar
  56. 25.56
    T.C. Bell, J.G. Cleary, I.H. Witten: Text Compression (Prentice Hall, Englewood Cliffs 1990)Google Scholar
  57. 25.57
    S. Bunton: On-Line Stochastic Processes in Data Compression, Doctoral Dissertation (University of Washington, Seattle 1996)Google Scholar
  58. 25.58
    D. Huron: Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, Cambridge 2006)Google Scholar
  59. 25.59
    J.-P. Rameau: Traite de l’harmonie reduite a ses principes naturels (J.B.C. Ballard, Paris 1722)Google Scholar
  60. 25.60
    W. Piston: Harmony (W.W.Norton, New York 1948)Google Scholar
  61. 25.61
    R.O. Gjerdingen: Learning syntactically significant temporal patterns of chords, Neural Netw. 5, 551–564 (1992)CrossRefGoogle Scholar
  62. 25.62
    V. Byros: Meyer's anvil: Revisiting the schema concept, Music Anal. 31(3), 273–346 (2012)CrossRefGoogle Scholar
  63. 25.63
    V. Byros: Towards an ``archaeology'' of hearing: schemata and eighteenth-century consciousness, Musica Humana 1(2), 235–306 (2009)Google Scholar
  64. 25.64
    D. Conklin, I.H. Witten: Multiple viewpoint systems for music prediction, J. New Music Res. 24(1), 51–73 (1995)CrossRefGoogle Scholar
  65. 25.65
    M.T. Pearce: The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception and Composition, Doctoral Dissertation (Department of Computing, City University, London 2005)Google Scholar
  66. 25.66
    L.R. Rabiner: A tutorial on Hidden Markov Models and selected applications in speech recognition, Proc. IEEE 77(2), 257–285 (1989)CrossRefGoogle Scholar
  67. 25.67
    S. Kostka, D. Payne: Tonal Harmony (McGraw-Hill, New York 1995)Google Scholar
  68. 25.68
    M. Rohrmeier: A generative grammar approach to diatonic harmonic structure. In: Proc. 4th Sound Music Comput. Conf., ed. by Spyridis, Georgaki, Kouroupetroglou, Anagnostopoulou (2007) pp. 97–100Google Scholar
  69. 25.69
    D.R. Hofstadter: Goedel, Escher, Bach (Basic Books, New York 1979)Google Scholar
  70. 25.70
    I. Giblin: Music and the Generative Enterprise: Situating a Generative Theory of Tonal Music in the Cognitive Sciences, Doctoral Dissertation (University of New South Wales, Sydney 2008)Google Scholar
  71. 25.71
    F. Lerdahl, R. Jackendoff: A Generative Theory of Tonal Music (MIT Press, Cambridge 1983)Google Scholar
  72. 25.72
    M. Steedman: A generative grammar for jazz chord sequences, Music Percept 2(1), 52–77 (1984)CrossRefGoogle Scholar
  73. 25.73
    H. Riemann: Musikalische Syntaxis (Breitkopf Härtel, Leipzig 1877)Google Scholar
  74. 25.74
    T. Christensen: The Schichtenlehre of Hugo Riemann, Theory Only 6(4), 37–44 (1982)Google Scholar
  75. 25.75
    H. Schenker: Der Freie Satz. Neue musikalische Theorien und Phantasien (Margada, Liège 1935)Google Scholar
  76. 25.76
    F. Lerdahl: Cognitive constraints on compositional systems. In: Generative Processes in Music: The Psychology of Performance, Improvisation and Composition, ed. by J.A. Sloboda (Clarendon, Oxford 1988) pp. 231–259Google Scholar
  77. 25.77
    A. Keiler: Bernstein’s ‘‘The Unanswered Question’’ and the problem of musical competence, Music. Q. 64(2), 195–222 (1978)CrossRefGoogle Scholar
  78. 25.78
    A. Keiler: Two views of musical semiotics. In: The Sign in Music and Literature, ed. by W. Steiner (Univ. Texas Press, Austin 1981) pp. 138–168Google Scholar
  79. 25.79
    D. Tidhar: A Hierarchical and Deterministic Approach to Music Grammars and its Application to Unmeasured Preludes (dissertation.de, Berlin 2005)Google Scholar
  80. 25.80
    I. Deliège: Grouping conditions in listening to music: An approach to Lerdahl and Jackendoff’s grouping preference rules, Music Percept 4(4), 325–360 (1987)CrossRefGoogle Scholar
  81. 25.81
    R. Jackendoff: Foundations of Language – Brain, Meaning, Grammar, Evolution (Oxford Univ. Press, Oxford 2003)Google Scholar
  82. 25.82
    R. Jackendoff: A parallel architecture perspective on language processing, Brain Res 1146, 2–22 (2007)CrossRefGoogle Scholar
  83. 25.83
    C. Roads: Grammars as representations for music. In: Foundations of Computer Music, ed. by C. Roads, J. Strawn (MIT Press, Cambridge 1985) pp. 403–442Google Scholar
  84. 25.84
    J. Sundberg, B. Lindblom: Generative theories for describing musical structure. In: Representing Musical Structure, ed. by P. Howell, R. West, I. Cross (Academic Press, London 1991) pp. 245–272Google Scholar
  85. 25.85
    P.N. Johnson-Laird: Jazz improvisation: A theory at the computational level. In: Representing Musical Structure, ed. by P. Howell, R. West, I. Cross (Academic Press, London 1991) pp. 291–325Google Scholar
  86. 25.86
    S.M. Shieber: Evidence against the context-freeness of natural language. In: The Formal Complexity of Natural Language, ed. by W.J. Savitch, E. Bach, W. Marsh, G. Safran-Navah (Springer Netherlands, Dordrecht 1987) pp. 320–334Google Scholar
  87. 25.87
    A.K. Joshi, K.V. Shanker, D. Weir: The Convergence of Mildly Context-Sensitive Grammar Formalisms. Technical Report No. MS- CIS-90-01 (Univ. of Pennsylvania, Department of Computer and Information Science 1990)Google Scholar
  88. 25.88
    M. Steedman: The Syntactic Process (MIT Press, Cambridge 2001)Google Scholar
  89. 25.89
    E.P. Stabler: Computational perspectives on minimalism. In: Oxford Handbook of Linguistic Minimalism, ed. by C. Boeckx (Oxford Univ. Press, Oxford 2011) pp. 617–643Google Scholar
  90. 25.90
    J. Katz, D. Pesetsky: The Identity Thesis for Language and Music. http://ling.auf.net/lingbuzz/000959 (2010)
  91. 25.91
    D. Cope: Computer modelling of musical intelligence in EMI, Comput. Music J. 16(2), 69–83 (1992)CrossRefGoogle Scholar
  92. 25.92
    P. Mavromatis: A hidden Markov model of melody production in Greek church chant, Comput. Musicol. 14, 93–112 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Institute of Art and MusicTU DresdenDresdenGermany
  2. 2.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUK

Personalised recommendations