Advertisement

Confidential Benchmarking Based on Multiparty Computation

  • Ivan Damgård
  • Kasper DamgårdEmail author
  • Kurt Nielsen
  • Peter Sebastian Nordholt
  • Tomas Toft
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9603)

Abstract

We report on the design and implementation of a system that uses multiparty computation to enable banks to benchmark their customers’ confidential performance data against a large representative set of confidential performance data from a consultancy house. The system ensures that both the banks’ and the consultancy house’s data stays confidential, the banks as clients learn nothing but the computed benchmarking score. In the concrete business application, the developed prototype helps Danish banks to find the most efficient customers among a large and challenging group of agricultural customers with too much debt. We propose a model based on linear programming for doing the benchmarking and implement it using the SPDZ protocol by Damgård et al., which we modify using a new idea that allows clients to supply data and get output without having to participate in the preprocessing phase and without keeping state during the computation. We ran the system with two servers doing the secure computation using a database with information on about 2500 users. Answers arrived in about 25 s.

Keywords

Data Envelopment Analysis Efficiency Score Credit Rating Cloud Provider Secure Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [ABT05]
    Agrell, P.J., Bogetoft, P., Tind, J.: DEA and dynamic yardstick competition in Scandinavian electricity distribution. J. Prod. Anal. 23(2), 173–201 (2005)CrossRefGoogle Scholar
  2. [ANB12]
    Asmild, M., Nielsen, K., Bogetoft, P.: Are high labour costs destroying the competitiveness of Danish dairy farmers? Evidence from an international benchmarking analysis. MSAP Working Paper Series (2012)Google Scholar
  3. [BCc84]
    Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30, 1078–1092 (1984)CrossRefzbMATHGoogle Scholar
  4. [BN08]
    Bogetoft, P., Nielsen, K.: DEA based auctions. Eur. J. Oper. Res. 184, 685–700 (2008)CrossRefzbMATHGoogle Scholar
  5. [BO11]
    Bogetoft, P., Otto, L.: Benchmarking with DEA, SFA, and R. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  6. [BOGW88]
    Ben-Or, M., Goldwasser, S., Wigderson, A.:. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Proceedings of the 20th ACM STOC, Chicago, Illinois, USA, 2–4 May, pp. 1–10. ACM Press (1988)Google Scholar
  7. [CCD88]
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Proceedings of the 20th ACM STOC, Chicago, Illinois, USA, 2–4 May, pp. 11–19. ACM Press (1988)Google Scholar
  8. [CcR78]
    Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2, 429–444 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [CcR79]
    Charnes, A., Cooper, W.W., Rhodes, E.: Short communication: measuring the efficiency of decision making units. Eur. J. Oper. Res. 3, 339 (1979)CrossRefzbMATHGoogle Scholar
  10. [Cd10]
    Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15497-3_9 CrossRefGoogle Scholar
  11. [CDF+08]
    Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78967-3_27 CrossRefGoogle Scholar
  12. [CPV04]
    Cielen, A., Peeters, L., Vanhoof, K.: Bankruptcy prediction using a data envelopment analysis. Eur. J. Oper. Res. 154(2), 526–532 (2004)CrossRefzbMATHGoogle Scholar
  13. [CST07]
    Cooper, W.W., Seiford, L.M., Tone, K.: Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd edn. Springer, New York (2007)zbMATHGoogle Scholar
  14. [DFK+06]
    Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). doi: 10.1007/11681878_15 CrossRefGoogle Scholar
  15. [DKL+13]
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40203-6_1 CrossRefGoogle Scholar
  16. [DPSZ12]
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_38 CrossRefGoogle Scholar
  17. [EPT08]
    Emrouznejad, A., Parker, B.R., Tavares, G.: Evaluation of research in efficiency and productivity: a survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Econ. Plann. Sci. 42, 151–157 (2008)CrossRefGoogle Scholar
  18. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A., (ed.) Proceedings of the 19th ACM STOC, New York City, New York, USA, 25–27 May, pp. 218–229. ACM Press (1987)Google Scholar
  19. [JNO14]
    Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure computation. In: Proceedings of the 6th edition of the ACM Workshop on Cloud Computing Security, pp. 81–92. ACM (2014)Google Scholar
  20. [Ker08a]
    Kerschbaum, F.: Building a privacy-preserving benchmarking enterprise system. Enterp. IS 2(4), 421–441 (2008)CrossRefGoogle Scholar
  21. [Ker08b]
    Kerschbaum, F.: Practical privacy-preserving benchmarking. In: Jajodia, S., Samarati, P., Cimato, S. (eds.) SEC 2008. ITIFIP, vol. 278, pp. 17–31. Springer, Boston, MA (2008). doi: 10.1007/978-0-387-09699-5_2 CrossRefGoogle Scholar
  22. [KSZ+11]
    Kerschbaum, F., Schröpfer, A., Zilli, A., Pibernik, R., Catrina, O., de Hoogh, S., Schoenmakers, B., Cimato, S., Damiani, E.: Secure collaborative supply-chain management. IEEE Comput. 44(9), 38–43 (2011)CrossRefGoogle Scholar
  23. [KT06]
    Kerschbaum, F., Terzidis, O.: Filtering for private collaborative benchmarking. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 409–422. Springer, Heidelberg (2006). doi: 10.1007/11766155_29 CrossRefGoogle Scholar
  24. [Mes97]
    Mester, L.J.: What’s the point of credit scoring? Bus. Rev. 3, 3–16 (1997)Google Scholar
  25. [NT07]
    Nielsen, K., Toft, T.: Secure relative performance scheme. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 396–403. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77105-0_44 CrossRefGoogle Scholar
  26. [PAS04]
    Paradi, J.C., Asmild, M., Simak, P.C.: Using DEA and worst practice DEA in credit risk evaluation. J. Prod. Anal. 21(2), 153–165 (2004)CrossRefGoogle Scholar
  27. [PBS09]
    Premachandra, I.M., Bhabra, G.S., Sueyoshi, T.: DEA as a tool for bankruptcy assessment: a comparative study with logistic regression technique. Eur. J. Oper. Res. 193(2), 412–424 (2009)CrossRefzbMATHGoogle Scholar
  28. [Tof09a]
    Toft, T.: Constant-rounds, almost-linear bit-decomposition of secret shared values. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357–371. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00862-7_24 CrossRefGoogle Scholar
  29. [Tof09b]
    Toft, T.: Solving linear programs using multiparty computation. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03549-4_6 CrossRefGoogle Scholar
  30. [Yao82]
    Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: Proceedings of the 23rd FOCS, Chicago, Illinois, 3–5 November, pp. 160–164. IEEE Computer Society Press (1982)Google Scholar

Copyright information

© International Financial Cryptography Association 2017

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Kasper Damgård
    • 2
    Email author
  • Kurt Nielsen
    • 3
  • Peter Sebastian Nordholt
    • 2
  • Tomas Toft
    • 4
  1. 1.Department of Computer ScienceAarhus UniversityAarhusDenmark
  2. 2.The Alexandra InstituteAarhusDenmark
  3. 3.Department of Food and Resource EconomicsUniversity of CopenhagenCopenhagenDenmark
  4. 4.PartisiaAarhusDenmark

Personalised recommendations