• Mark BangertEmail author
  • Peter Ziegenhein


Jeder Strahlentherapie geht ein mehrstufiger Entscheidungsprozess – die Bestrahlungsplanung – voraus, um eine ideale Behandlung für jeden einzelnen Patienten zu gewährleisten.

Das Ziel einer Bestrahlung ist die Applikation einer ausreichenden Strahlendosis im Tumorgewebe, um eine kurative oder palliative Behandlung zu ermöglichen. Leider geht eine Bestrahlung des Tumorgewebes immer mit einer Bestrahlung von Normalgewebe einher. Somit werden sowohl innerhalb als auch außerhalb des Zielvolumens Strahlenschäden erzeugt. Während einer Bestrahlungsplanung wird für einen individuellen Patienten ein Bestrahlungsplan generiert, der eine adäquate Bestrahlung des Zielvolumens bei möglichst minimaler Belastung des Normalgewebes ermöglicht.


  1. 1.
    Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 16(4):577–592CrossRefGoogle Scholar
  2. 2.
    Bangert M (2011) New concepts for beam angle selection in IMRT treatment planning: From heuristics to combinatorial optimization. PhD Thesis, HeidelbergGoogle Scholar
  3. 3.
    Bangert M, Ziegenhein P, Oelfke U (2013) Comparison of beam angle selection strategies for intracranial IMRT. Med Phys 40(1):11716CrossRefGoogle Scholar
  4. 4.
    Bangert M, Hennig P, Oelfke U (2013) Analytical probabilistic modeling for radiation therapy treatment planning. Phys Med Biol 58(16):5401–5419CrossRefGoogle Scholar
  5. 5.
    Bille J, Schlegel W (2002) Medizinische Physik 2: Medizinische Strahlenphysik. Springer, HeidelbergGoogle Scholar
  6. 6.
    Bortfeld T, Schlegel W, Rhein B (1993) Decomposition of pencil beam kernels for fast dose calculations in three-dimensional treatment planning. Med Phys 20(2 Pt 1):311–318ADSCrossRefGoogle Scholar
  7. 7.
    Brahme A, Roos JE, Lax I (1982) Solution of an integral equation encountered in rotation therapy. Phys Med Biol 27(10):1221–1229CrossRefGoogle Scholar
  8. 8.
    Breedveld S, Storchi PR, Voet PW, Heijmen BJ (2012) icycle: integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med Phys 39(2):951–963CrossRefGoogle Scholar
  9. 9.
    Cassioli A, Unkelbach J (2013) Aperture shape optimization for IMRT treatment planning. Phys Med Biol 58(2):301–318CrossRefGoogle Scholar
  10. 10.
    Feuvret L, Noel G, Mazeron JJ, Bey P (2006) Conformity index: a review. Int J Radiat Oncol Biol Phys 64(2):333–342CrossRefGoogle Scholar
  11. 11.
    Gottschalk B, Koehler AM, Schneider RJ, Sisterson JM, Wagner MS (1993) Multiple coulomb scattering of 160 meV protons. Nucl Instrum Meth B 74(4):467–490ADSCrossRefGoogle Scholar
  12. 12.
    van Herk M, Remeijer P, Lebesque JV (2002) Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys 52(5):1407–1422CrossRefGoogle Scholar
  13. 13.
    Hong L, Goitein M, Bucciolini M, Comiskey R, Gottschalk B, Rosenthal S et al (1996) A pencil beam algorithm for proton dose calculations. Phys Med Biol 41(8):1305–1330CrossRefGoogle Scholar
  14. 14.
    International Commisson on Radiation Units and Measurements (ICRU) (2011) ICRU report 83: state of the art on dose prescription, reporting and recording in intensity-modulated radiation therapyGoogle Scholar
  15. 15.
    Jiang H, Seco J, Paganetti H (2007) Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations. Med Phys 34(4):1439–1449CrossRefGoogle Scholar
  16. 16.
    Kamerling CP, Ziegenhein P, Sterzing F, Oelfke U (2016) Interactive dose shaping part 2: proof of concept study for six prostate patients. Phys Med Biol 61(6):2471–2484CrossRefGoogle Scholar
  17. 17.
    Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol 76(3):10–S19CrossRefGoogle Scholar
  18. 18.
    Wiesner HP et al (2017) Development of the open-source dose calculation and optimization toolkit matRad. Med Phys 44(6):2556–2568CrossRefGoogle Scholar
  19. 19.
    Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New YorkCrossRefGoogle Scholar
  20. 20.
    Parodi K, Mairani A, Sommerer F (2013) Monte Carlo-based parametrization of the lateral dose spread for clinical treatment planning of scanned proton and carbon ion beams. J Radiat Res 54(Suppl 1):91–96CrossRefGoogle Scholar
  21. 21.
    Perl J, Shin J, Schumann J, Faddegon B, Paganetti H (2012) TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys 39(11):6818–6837CrossRefGoogle Scholar
  22. 22.
    Rasch C, Steenbakkers R, van Herk M (Hrsg) (2005) Target definition in prostate, head, and neck. Seminars in radiation oncology. Elsevier, New YorkGoogle Scholar
  23. 23.
    Schaffner B, Pedroni E, Lomax A (1999) Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation. Phys Med Biol 44(1):27–41CrossRefGoogle Scholar
  24. 24.
    Schneider W, Bortfeld T, Schlegel W (2000) Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol 45(2):459–478CrossRefGoogle Scholar
  25. 25.
    Sempau J, Wilderman SJ, Bielajew AF (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 45(8):2263–2291CrossRefGoogle Scholar
  26. 26.
    Soukup M, Fippel M, Alber M (2005) A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations. Phys Med Biol 50(21):5089–5104CrossRefGoogle Scholar
  27. 27.
    Szymanowski H, Oelfke U (2002) Two-dimensional pencil beam scaling: an improved proton dose algorithm for heterogeneous media. Phys Med Biol 47(18):3313–3330CrossRefGoogle Scholar
  28. 28.
    Thieke C, Kufer KH, Monz M, Scherrer A, Alonso F, Oelfke U et al (2007) A new concept for interactive radiotherapy planning with multicriteria optimization: first clinical evaluation. Radiother Oncol 85(2):292–298CrossRefGoogle Scholar
  29. 29.
    Vinod SK, Min M, Jameson MG, Holloway LC (2016) A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology. J Med Imaging Radiat Oncol 60(3):393–406CrossRefGoogle Scholar
  30. 30.
    Ziegenhein P, Kamerling CP, Bangert M, Kunkel J, Oelfke U (2013) Performance-optimized clinical IMRT planning on modern CPUs. Phys Med Biol 58(11):3705–3715CrossRefGoogle Scholar
  31. 31.
    Ziegenhein P, Pirner S, Kamerling PC, Oelfke U (2015) Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation. Phys Med Biol 60(15):6097–6111CrossRefGoogle Scholar
  32. 32.
    Ziegenhein P, Kamerling CP, Oelfke U (2016) Interactive dose shaping part 1: a new paradigm for IMRT treatment planning. Phys Med Biol 61(6):2457–2470CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Medizinische Physik in der Strahlentherapie (E040)Deutsches Krebsforschungszentrum (DKFZ)HeidelbergDeutschland
  2. 2.Joint Department of PhysicsThe Royal Marsden NHS Foundation Trust, Institute of Cancer Research (ICR)LondonGroßbritannien

Personalised recommendations