Advertisement

Wirkungsabschätzung

  • Rolf FrischknechtEmail author
Chapter
  • 118 Downloads

Zusammenfassung

In der Wirkungsabschätzung geht es darum, die Informationen aus der Sachbilanz (d. h. die Ergebnisse mit den kumulierten Schadstoffemissionen und Ressourcenverbräuchen) für die Kommunikation und/oder die Entscheidungsunterstützung auf wenige (Umwelt-)Parameter zu verdichten. Eine Verdichtung bedeutet, dass eine Gewichtung oder Priorisierung der vorliegenden Informationen vorgenommen wird.

Literatur

  1. Ahbe S, Braunschweig A, Müller-Wenk R (1990) Methodik für Ökobilanzen auf der Basis ökologischer Optimierung. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), BernGoogle Scholar
  2. Ahbe S, Schebek L, Jansky N, Wellge S, Weihofen S (2014) Methode der ökologischen Knappheit für Deutschland – Eine Initiative der Volkswagen AG. Autouni Schriftenreihe. Logos Verlag Berlin GmbH, BerlinGoogle Scholar
  3. Baccini P, Brunner PH (1991) Metabolism of the Anthroposphere. Springer, BerlinCrossRefGoogle Scholar
  4. Baccini P, Bader HP (1996) Regionaler Stoffhaushalt: Erfassung, Bewertung und Steuerung, 1. Aufl. Berlin, Spektrum- Akademischer. ISBN 3-86025-235-6Google Scholar
  5. Basler und Hofmann (1974) Studie Umwelt und Volkswirtschaft. Vergleich der Umweltbelastung von Behältern aus PVC, Glas, Blech und Karton. Bundesamt für Umweltschutz, BernGoogle Scholar
  6. Berg M, Scheringer M (2004) Problems in Environmental Risk Assessment and the Need for Proxy Measures. In: Fresenius Environmental Bulletin, 3(8):487–492Google Scholar
  7. Boulay A-M, Bare J, Benini L, Berger M, Lathuillière M, Manzardo A, Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Oki T, Worbe S, Pfister S (2017) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on Available WAter REmaining (AWARE). Int J Life Cycle Assess:1–11.  https://doi.org/10.1007/s11367-017-1333-8
  8. Boustead I, Hancock GF (1979) Handbook of industrial energy analysis. Ellis Horwood Ltd., ChichesterGoogle Scholar
  9. Brand G, Scheidegger A, Schwank O, Braunschweig A (1998) Bewertung in Ökobilanzen mit der Methode der ökologischen Knappheit – Ökofaktoren 1997. INFRAS. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), BernGoogle Scholar
  10. Braunschweig A (1988) Die ökologische Buchhaltung als Instrument der Städtischen Umweltpolitik. Rüegger, GrüschGoogle Scholar
  11. Bulle C, Margni M, Patouillard L, Boulay A-M, Bourgault G, De Bruille V, Cao V, Hauschild M, Henderson A, Humbert S, Kashef-Haghighi S, Kounina A, Laurent A, Levasseur A, Liard G, Rosenbaum RK, Roy P-O, Shaked S, Fantke P, Jolliet O (2019) IMPACT World+: a globally regionalized life cycle impact assessment method. Int J Life Cycle Assess.  https://doi.org/10.1007/s11367-019-01583-0CrossRefGoogle Scholar
  12. BUS (Bundesamt für Umweltschutz) (1984) Ökobilanzen von Packstoffen, Bd 24. BernGoogle Scholar
  13. Büsser S, Frischknecht R, Kiyotada H, Kono J (2012) Ecological scarcity Japan. ESU-services Ltd., UsterGoogle Scholar
  14. Chaudhary A, Brooks TM (2018) Land use intensity-specific global characterization factors to assess product biodiversity footprints. Environ Sci Technol 52:5094–5104.  https://doi.org/10.1021/acs.est.7b05570CrossRefPubMedGoogle Scholar
  15. Chaudhary A, Pfister S, Hellweg S (2016) Spatially explicit analysis of biodiversity loss due to global agriculture, pasture and forest land use from a producer and consumer perspective. Environ Sci Technol 50:3928–3936CrossRefGoogle Scholar
  16. Chaudhary A, Verones F, de Baan L, Hellweg S (2015) Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ Sci Technol 49(16):9987–9995CrossRefGoogle Scholar
  17. CML (2013) CML-IA Characterisation factors, Version 4.2, Centre for Environmental Sciences, Leiden University, Leiden, The Netherlands Google Scholar
  18. Derwent RG, Jenkin ME, Saunders SM, Pilling MJ (1998) Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism. Atmos Environ 32:2429–2441CrossRefGoogle Scholar
  19. Dewulf J, Bösch ME, De Meester B, Van der Vorst G, Van Langenhove H, Hellweg S, Huijbregts MAJ (2007) Cumulative Exergy extraction from the Natural environment (CEENE): a comprehensive life cycle impact assessment method for resource depletion. Environ Sci Technol 41(24):8477–8483.  https://doi.org/10.1021/es0711415CrossRefPubMedGoogle Scholar
  20. European Commission (2013) Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. Official Journal of the European Union. ISSN 1977-0677Google Scholar
  21. Fantke P, (Hrsg) Bijster M, Guignard C, Hauschild M, Huijbregts M, Jolliet O, Kounina A, Magaud V, Margni M, McKone T, Posthuma L, Rosenbaum RK, van de Meent D, van Zelm R (2018) USEtox® 2.0 Documentation (Version 1). USEtox® International Center, Lyngby, DenmarkGoogle Scholar
  22. Fantke P, Evans JS, Hodas N, Apte JS, Jantunen MJ, Jolliet O, McKone TE (2016) Health impacts of fine particulate matter. In: Global guidance for life cycle impact assessment indicators. UNEP, ParisGoogle Scholar
  23. Frischknecht R (1992) Funktionsorientierte Systemanalyse – Ein Beitrag zur Ökobilanzdiskussion. Swiss Federal Institute of Technology Zürich, ZürichGoogle Scholar
  24. Frischknecht R (2014) Impact assessment of abiotic resources: the role of borrowing and dissipative resource use. Paper presented at the LCA Forum No. 55, Zürich, 11. April 2014Google Scholar
  25. Frischknecht R, Braunschweig A, Hofstetter P, Suter P (2000) Human health damages due to ionising radiation in life cycle impact assessment. Rev Environ Impact Assess 20(2):159–189CrossRefGoogle Scholar
  26. Frischknecht R, Büsser Knöpfel S (2013a) Ökofaktoren Schweiz 2013 gemäss der Methode der ökologischen Knappheit. Grundlagen und Anwendung auf die Schweiz. Bundesamt für Umwelt, BernGoogle Scholar
  27. Frischknecht R, Büsser Knöpfel S (2013b) Ecological scarcity 2013 – new features and its application in industry and administration – 54th LCA Forum, Ittigen/Berne, Switzerland, December 5. Int J LCA 19(6):1361–1366.  https://doi.org/10.1007/s11367-014-0744-zCrossRefGoogle Scholar
  28. Frischknecht R, Heijungs R, Hofstetter P (1998) Einstein’s lesson on energy accounting in LCA. Int J LCA 3(5):266–272CrossRefGoogle Scholar
  29. Frischknecht R, Jolliet O (Hrsg) (2016) Global guidance on environmental life cycle impact assessment indicators, vol 1. United Nations Environment Programme, UNEP, ParisGoogle Scholar
  30. Frischknecht R, Jolliet O (Hrsg) (2019) Global guidance on environmental life cycle impact assessment indicators, vol 2. United Nations Environment Programme, UNEP, ParisGoogle Scholar
  31. Frischknecht R, Jungbluth N, Althaus H-J, Bauer C, Doka G, Dones R, Hellweg S, Hischier R, Humbert S, Margni M, Nemecek T (2007) Implementation of life cycle impact assessment methods. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  32. Frischknecht R, Steiner R, Jungbluth N (2008) Methode der ökologischen Knappheit – Ökofaktoren 2006. Bundesamt für Umwelt (BAFU), BernGoogle Scholar
  33. Frischknecht R, Wyss F, Büsser Knöpfel S, Lützkendorf T, Balouktsi M (2015) Cumulative energy demand in LCA: the energy harvested approach. Int J Life Cycle Assess 20(7):957–969.  https://doi.org/10.1007/s11367-015-0897-4CrossRefGoogle Scholar
  34. Goedkoop M, Heijungs R, Huijbregts MAJ, De Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008 – a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1. Aufl. Report I: Characterisation, NLGoogle Scholar
  35. Goedkoop M, Spriensma R (2000) The eco-indicator 99: a damage oriented method for life cycle impact assessment. PRé Consultants, AmersfoortGoogle Scholar
  36. Graedel TE, Barr R, Chandler C, Chase T, Choi J, Christoffersen L, Friedlander E, Henly C, Jun C, Nassar NT, Schechner D, Warren S, Yang M-y, Zhu C (2012) Methodology of metal criticality determination. Environ Sci Technol 46(2):1063–1070.  https://doi.org/10.1021/es203534zCrossRefPubMedGoogle Scholar
  37. Guinée JB (final editor), Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, Weidema BP (2001a) Life cycle assessment; An operational guide to the ISO standards; Part 3: Scientific Background. Ministry of Housing, Spatial Planning and Environment (VROM) and Centre of Environmental Science (CML), Den Haag and Leiden, The NetherlandsGoogle Scholar
  38. Guinée JB (final editor), Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, Weidema BP (2001b) Life cycle assessment; An operational guide to the ISO standards; Parts 1 and 2. Ministry of Housing, Spatial Planning and Environment (VROM) and Centre of Environmental Science (CML), Den Haag and Leiden, The NetherlandsGoogle Scholar
  39. Hauschild M, Goedkoop M, Guinée J, Heijungs R, Huijbregts MAJ, Jolliet O, Margni M, De Schryver A (2011) Recommendations for life cycle impact assessment in the European context – based on existing environmental impact assessment models and factors. European Commission – DG Joint Research Centre, JRC, Institute for Environment and Sustainability (IES)Google Scholar
  40. Hofstetter P (1998) Perspectives in life cycle impact assessment: a structured approach to combine models of the technosphere, ecosphere and valuesphere. Kluwer, BostonCrossRefGoogle Scholar
  41. Hofstetter P, Braunschweig A, Mettier T, Müller-Wenk R, Tietje O (2000) The mixing triangle: correlation and graphical decision support for LCA-based comparisons. J Ind Ecol 3(4):97–115CrossRefGoogle Scholar
  42. Huijbregts MAJ, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks AJ, van de Meent D, Ragas AMJ, Reijnders L, Struijs J (2006) Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol 40(3):641–648CrossRefGoogle Scholar
  43. Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2016) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess.  https://doi.org/10.1007/s11367-016-1246-yCrossRefGoogle Scholar
  44. Humbert S (2009) Geographically differentiated life-cycle impact assessment of human health. PhD Thesis, University of California, Berkeley, California, USAGoogle Scholar
  45. IFIAS (1974) Energy analysis workshop on methodology and conventions. International Federation of Institutes for Advanced Studies. IFIAS, Guldsmedshyttan, SwedenGoogle Scholar
  46. IPCC (Intergovernmental Panel on Climate Change) (2013) The IPCC fifth assessment report – climate change 2013: the physical science basis. Working Group I. IPCC Secretariat, Geneva, SwitzerlandGoogle Scholar
  47. Itsubo N, Murakami K, Kuriyama K, Yoshida K, Tokimatsu K, Inaba A (2015) Development of weighting factors for G20 countries – explore the difference in environmental awareness between developed and emerging countries. Int J Life Cycle Assess 23(12):2311–2326.  https://doi.org/10.1007/s11367-015-0881-zCrossRefGoogle Scholar
  48. Jansen P, Jordan S, Schikarski W(1972) Vergleichende Modelltheorie der atmosphärischen Schadstoffbelastung durch Kernkraftwerke. In: 10. Colloque IRCHA sur les Atmosphères Polluées, Paris, 3.–5. Mai 1972Google Scholar
  49. Jolliet O, Müller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Peña C, Pennington D, Potting J, Rebitzer G, Stewart M, Udo de Haes H, Weidema Bo P (2004) The LCIA midpoint-damage framework of the UNEP-SETAC life cycle initiative. Int J LCA 12(1):394–404CrossRefGoogle Scholar
  50. KBOB, eco-bau, IPB (2016) KBOB Ökobilanzdatenbestand DQRv2:2016; Grundlage für die KBOB-Empfehlung 2009/1:2016: Ökobilanzdaten im Baubereich, Stand 2016. Koordinationskonferenz der Bau- und Liegenschaftsorgane der öffentlichen Bauherren c/o BBL (Bundesamt für Bauten und Logistik) Google Scholar
  51. Muhl M, Berger M, Finkbeiner M (2019) Development of eco-factors for the European Union based on the ecological scarcity method. Int J Life Cycle Assess, 24(9):1701–1714, https://doi.org/10.1007/s11367-018-1577-y
  52. Müller-Wenk R (1978) Die ökologische Buchhaltung: Ein Informations- und Steuerungsinstrument für umweltkonforme Unternehmenspolitik. Campus, Frankfurt a. M.Google Scholar
  53. Müller-Wenk R (1999) Life-cycle impact assessment of road transport noise. Inst. f. Wirtschaft und Ökologie, St. GallenGoogle Scholar
  54. Müller Schmied H, Eisner S, Franz D, Wattenbach M, Portmann FT, Flörke M, Döll P (2014) Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol Earth Syst Sci 18:3511–3538CrossRefGoogle Scholar
  55. Schaefer H (1982) Kumulierter Energieverbrauch zum Herstellen von Produkten; Methoden der Ermittlung – Probleme der Bewertung. Brennstoff-Wärme-Kraft, BWK 34(7):334–337Google Scholar
  56. Scheringer M (1999) Persistenz und Reichweite von Umweltchemikalien. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  57. Schmidt-Bleek F (1994) Wieviel Umwelt braucht der Mensch? MIPS – Das Mass für ökologisches Wirtschaften. Birkhäuser, BaselCrossRefGoogle Scholar
  58. Seppälä J, Posch M, Johansson M, Hettelingh JP (2006) Country-dependent characterisation factors for acidification and terrestrial eutrophication based on accumulated exceedance as an impact category indicator. Int J LCA 11(6):403–416CrossRefGoogle Scholar
  59. Stucki M, Büsser S, Itten R, Frischknecht R, Wallbaum H (2011) Comparative life cycle assessment of geosynthetics versus conventional construction material. ESU-services Ltd. Commissioned by European Association for Geosynthetic Manufacturers (EAGM), Uster and Zürich, CHGoogle Scholar
  60. Vadenbo C, Rorbech J, Haupt M, Frischknecht R (2014) Abiotic resources: new impact assessment approaches in view of resource efficiency and resource criticality – 55th discussion Forum on life cycle assessment, Zurich, Switzerland, April 11, 2014. Int J LCA.  https://doi.org/10.1007/s11367-014-0784-4CrossRefGoogle Scholar
  61. Van Zelm R, Huijbregts MAJ, Den Hollander HA, Van Jaarsveld HA, Sauter FJ, Struijs J, Van Wijnen HJ, Van de Meent D (2008) European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos Environ 42:441–453CrossRefGoogle Scholar
  62. VDI (Verein Deutscher Ingenieure) (1997) Cumulative energy demand – terms, definitions, methods of calculation. VDI-Richtlinien 4600. DüsseldorfGoogle Scholar
  63. VDI (Verein Deutscher Ingenieure) (2012) Cumulative energy demand – terms, definitions, methods of calculation. VDI-Richtlinien 4600. DüsseldorfGoogle Scholar
  64. Verones F, Bare J, Bulle C, Frischknecht R, Hauschild M, Hellweg S, Henderson A, Jolliet O, Laurent A, Liao X, Lindner JP, Maia de Souza D, Michelsen O, Patouillard L, Pfister S, Posthuma L, Prado V, Ridoutt B, Rosenbaum RK, Sala S, Ugaya C, Vieira M, Fantke P (2017) LCIA framework and cross-cutting issues guidance within the UNEPSETAC life cycle initiative. J Clean Prod 161:957–967.  https://doi.org/10.1016/j.jclepro.2017.05.206CrossRefGoogle Scholar
  65. Verones F, Hellweg S, Azevedo LB, Chaudhary A, Cosme N, Fantke P, Goedkoop M, Hauschild M, Laurent A, Mutel CL, Pfister S, Ponsioen T, Steinmann Z, van Zelm R, Vieira M, Huijbregts MAJ (2018) LC-Impact, Version 0.5, A spatially differentiated life cycle impact assessment approach. Radboud University Nijmegen, NTNU, IIASA, ETH Zürich, DTU, PRé Sustainability ConsultantsGoogle Scholar
  66. Vieira M, Ponsioen TC, Goedkoop MJ, Huijbregts MAJ (2017) Surplus ore potential as a scarcity indicator for resource extraction. J Ind Ecol 21(2):381–390.  https://doi.org/10.1111/jiec.12444CrossRefGoogle Scholar
  67. WMO (World Meteorological Organization) (2011) Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project. World Meteorological Organisation, GenevaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.treeze GmbHUsterSchweiz

Personalised recommendations