Advertisement

Modellierung, integrative Simulation und Optimierung

  • Lothar Kroll
Chapter

Zusammenfassung

Gemäß der Leitidee einer Bivalenten Ressourceneffizienz (BRE) verfolgt der MERGECluster die Erschließung besonders hoher Einspar- und Innovationspotenziale. Bei effizienter Nutzung der zur Verfügung stehenden Ressourcen während des Fertigungsprozesses werden demnach Hybridprozesse und -bauteile erforscht, die sich bei mobilen Anwendungen auch während der Nutzungsphase durch hohe Energieeffizienz auszeichnen. Vor diesem Hintergrund widmet sich dieses Kapitel der konkreten Umsetzung dieser Zielstellung, indem es eine bivalente Optimierung des Herstellungsprozesses beim Spritzgießen und der resultierenden mechanischen Eigenschaften der gefertigten Bauteile anstrebt. Dabei interessieren die Wahl der Prozessparameter wie beispielsweise Einspritzpunkt, Einspritzdruck und Einspritzdauer, sodass in möglichst kurzer Zeit unter wenig Energieaufwand Bauteile mit hoher Festigkeit und geringem Gewicht gefertigt werden können. Als Demonstratoren dieser Optimierungskette dienen der sog. Chemnitzer Haken, eine Platte mit Einleger sowie ein Kettenglied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Ehrenstein, G. W.: Polymer-Werkstoffe Struktur – Eigenschaften – Anwendung. 3. Aufl., München: Hanser, (2011).Google Scholar
  2. [2]
    Rudolph, M.; Stockmann, M.; Landgraf, R.; Ihlemann, J.: Experimental determination and modelling of volume shrinkage in curing thermosets. in: arXiv preprint arXiv:1404.0310, (2014).Google Scholar
  3. [3]
    Hannusch, S.; Auerswald, C.; Stockmann, M.; Voigt, S.; Ihlemann, J.; Mehner, J.: Sensitivity Investigations of Fibre Bragg Grating Sensors Considering Different Interrogator Systems. in: Proceedings of 31th Danubia-Adria Symposium on Advances in Experimental Mechanics, (2014), S. 128–129.Google Scholar
  4. [4]
    VDI/VDE/GESA 2660: Optical strain sensor based in fibre Bragg grating – Fundamentals, characteristics and sensor testing, (2010).Google Scholar
  5. [5]
    Hannusch, S.; Stockmann, M.; Ihlemann, J.; Application of fibre BRAGG grating sensors for residual stress analysis. in: Proceedings in Applied Mathematics and Mechanics, 15/1, (2015), S. 199–200.CrossRefGoogle Scholar
  6. [6]
    Hannusch, S.; Stockmann, M.; Ihlemann, J.: Experimental Method for Residual Stress Analysis with Fibre Bragg Grating Sensor. in: Materials Today: Proceedings 3/4, (2016), S. 979–982.Google Scholar
  7. [7]
    Schramm, N.; Kaufmann, J.; Kroll, L.: Ply-Cycle: ANSYS Composite PrepPost assists in efficient, cost-effective design of a carbon-fiber-based bicycle frame. in: ANSYS Advantage, 5/3, (2011), S. 36–37.Google Scholar
  8. [8]
    Cuntze, R. G.: Efficient 3D and 2D failure conditions for UD laminae and their application within the verification of the laminate design. in: Composites Science and Technology, 66, (2006), S. 1081–1096.CrossRefGoogle Scholar
  9. [9]
    Goldberg, N.; Ihlemann, J.; Kroll, L.; Schramm, N.; Schneider, M.: Fully anisotropic material laws for fiberreinforced thermoplastics. in: Conference proceedings 2. IMTC – International Merge Technologies Conference, Chemnitz, (2015), S. 237–244.Google Scholar
  10. [10]
    Gibson, A. G.; Otheguy-Torres, M. E.; Browne, T. N. A.; Feih, S.; Mouritz, A. P.: High temperature and fire behaviour of continuous glass fibre/polypropylene laminates. in: Composites: Part A, 41, (2010), S. 1219–31.CrossRefGoogle Scholar
  11. [11]
    Schneider, M.; Ospald, F.; Kabel, M.: Computational homogenization of elasticity at large deformations on a staggered grid. in: Conference Proceedings of the YIC GACM, (2015), S. 178–181.Google Scholar
  12. [12]
    Schneider, M.; Ospald, F.; Kabel, M.: Computational homogenization of elasticity on a staggered grid. in: International Journal for Numerical Methods in Engineering, 105/9, (2016), S. 693–720.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Kabel, M.; Fink, A.; Ospald, F.; Schneider, M.: Nonlinear composite voxels and FFT-based homogenization. ECCOMAS, (2016).Google Scholar
  14. [14]
    Schneider, M.; Ospald, F.; Kabel, M.: A model order reduction method for computational homogenization at finite strains on regular grids using hyperelastic laminates to approximate interfaces. in: Computer Methods in Applied Mechanics and Engineering, 309, (2016), S. 476–496.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Herzog, R.; Ospald, F.: Parameter identification for short fiber-reinforced plastics using optimal experimental design. in: International Journal for Numerical Methods in Engineering, (2016).Google Scholar
  16. [16]
    Ospald, F.: Numerical simulation of injection molding using OpenFOAM. in: Proceedings in Applied Mathematics and Mechanics, 14/1, (2014), S. 673–674.CrossRefGoogle Scholar
  17. [17]
    Weller, H. G.; Tabor, G.; Jasak, H.; Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. in: Computers in Physics, 12,/6, (1998), S. 620–631.CrossRefGoogle Scholar
  18. [18]
    Advani, S. G.; Tucker, C. L.: The use of tensors to describe and predict fiber orientation in short fiber composites. in: Journal of Rheology, 31/8, (1987), S. 751–784.CrossRefGoogle Scholar
  19. [19]
    Montgomery-Smith, S.; Jack, D.; Smith, D. E.: The fast exact closure for Jeffery’s equation with diffusion. in: Journal of Non-Newtonian Fluid Mechanics, 166/7–8, (2011), S. 343–353.CrossRefGoogle Scholar
  20. [20]
    Yoo, T. S.; Ackerman, M. J.; Lorensen, W. E.; Schroeder, W.; Chalana, V.; Aylward, S.; Metaxas, D.: Engineering and algorithm design for an image processing API: A technical report on ITK - the Insight Toolkit. in: Studies in Health Technology and Informatics, 1, (2002), S. 586–592.Google Scholar
  21. [21]
    Beuchler, S.; Meyer, A.; Pester, M.: SPC-PM3AdH v 1.0 – Programmer’s Manual. TU Chemnitz: Preprint SFB393 01-18, (2001), (revised version, August 2003).Google Scholar
  22. [22]
    Glänzel, J.: Kurzvorstellung der 3d-FEM Software SPC-PM3AdH-XX. TU Chemnitz: Preprint CSC09-03, (2009).Google Scholar
  23. [23]
    Weise, M.; Meyer, A.: Grundgleichungen für transversal isotropes Materialverhalten. TU Chemnitz: Preprint CSC10-03, (2010).Google Scholar
  24. [24]
    Meyer, A.; Grundgleichungen und adaptive Finite-Elemente-Simulation bei „Großen Deformation“. TU Chemnitz: Preprint CSC07-02, (2007).Google Scholar
  25. [25]
    Balg, M.; Meyer, A.: Numerische Simulation nahezu inkompressibler Materialien unter Verwendung adaptiver, gemischter FEM. TU Chemnitz: Preprint CSC10-02, (2010).Google Scholar
  26. [26]
    Balg, M; Meyer, A.: Fast simulation of nearly incompressible nonlinear elastic material at large strain via adaptive mixed FEM. TU Chemnitz: Preprint CSC12-03, (2012).Google Scholar
  27. [27]
    Meyer, A.: Projection Techniques embedded in the PCGM for Handling Hanging Nodes and Boundary Restrictions. in: Topping, B. H. V.; Bittnar, Z. (Hrsg.): Engineering Computation Technology. Stirling Scotland: Saxe-Coburg Publications, (2002), S. 147–165.Google Scholar
  28. [28]
    Meyer, A.; Unger, R.: Projection methods for contact problems in elasticity. TU Chemnitz: Preprint SFB393 04-04, (2004).Google Scholar
  29. [29]
    Unger, R.: Unterraum-CG-Techniken zur Bearbeitung von Kontaktproblemen. Dissertation, TU Chemnitz, (2004).Google Scholar
  30. [30]
    Zhang, S.: Multilevel schwarz methods. in: Numerische Mathematik, 63, (1992), S. 512–539.MathSciNetCrossRefGoogle Scholar
  31. [31]
    Verführt, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Chichester, Stuttgart: Wiley-Teubner, (1996).Google Scholar
  32. [32]
    Meyer, A.: Error Estimators and the adaptive finite element method on large strain deformation problems. in: Mathematical Methods in the Applied Science, 32, (2009), S. 2148–2159.MathSciNetCrossRefGoogle Scholar
  33. [33]
    Meyer, A.: Programmbeschreibung SPC-PM3-AdH-XX - Teil 1. TU-Chemnitz: CSC-Preprint 14-01, (2014).Google Scholar
  34. [34]
    Meyer, A.: Programmbeschreibung SPC-PM3-AdH-XX - Teil 2. TU-Chemnitz: CSC-Preprint 14-02, (2014).Google Scholar
  35. [35]
    Springer, R.; Meyer, A.: Basics of Linear Thermoelasticity. TU Chemnitz: Preprint CSC15-03, (2015).Google Scholar
  36. [36]
    Springer, R.; Meyer, A.: Efficient Simulation of Short Fibre Reinforced Composites. in: Conference Proceedings YIC GACM, (2015), S. 221–224.Google Scholar
  37. [37]
    Springer, R.; Meyer, A.: Efficient Simulation of Short Fibre Reinforced Composites. in: Proceedings in Applied Mathematics and Mechanics, 16/1, (2016), S. 553–554.CrossRefGoogle Scholar
  38. [38]
    Meyer, A.; Schmidt, H.: Viscoelasticity at Large Strain Deformations. in: Proceedings in Applied Mathematics and Mechanics, 14, (2014), S. 843–844.CrossRefGoogle Scholar
  39. [39]
    Shutov, A. V.; Landgraf, R.; Ihlemann, J.: An explicit solution for implicit time stepping in multiplicative finite strain viscoelasticity. in: Computer Methods in Applied Mechanics and Engineering, 265, (2013), S. 213–225.MathSciNetCrossRefGoogle Scholar
  40. [40]
    Günnel, A: Numerical Aspects in Optimal Control of Elasticity Models with Large Deformations. Dissertation, TU Chemnitz, (2014).Google Scholar
  41. [41]
    Spencer, A. J. M.: Isotropic integrity bases for vectors and second-order tensors. in: Archive for Rational Mechanics and Analysis, 18/1, (1965).Google Scholar
  42. [42]
    Coleman, B. D.; Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. in: Archive for Rational Mechanics and Analysis, 13/1, (1963), S. 167–178.MathSciNetCrossRefGoogle Scholar
  43. [43]
    Lanir, Y.: Constitutive equations for fibrous connective tissues. in: Journal of Biomechanic, 16/1, (1983), S. 1–12.CrossRefGoogle Scholar
  44. [44]
    Goldberg, N.; Donner, H.; Ihlemann, J.: Evaluation of hyperelastic models for unidirectional short fibre reinforced materials using a representative volume element with refined boundary conditions. in: Technische Mechanik, 35/2, (2015), S. 80–99.Google Scholar
  45. [45]
    Goldberg, N.; Ihlemann, J.: On fast and accurate modelling of distributed fibre directions in composites. in: Proceedings in Applied Mathematics and Mechanics, 15/1, (2015), S. 293–294.CrossRefGoogle Scholar
  46. [46]
    Goldberg, N.; Ihlemann, J.: The effective heat conduction of short fibre reinforced materials considering the fibre distribution. in: Proceedings in Applied Mathematics and Mechanics, 16/1, (2016), S. 343–344.CrossRefGoogle Scholar
  47. [47]
    Krige, D. G.: A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand. in: Journal of the Chemical, Metallurgical and Mining Society of South Africa, 52/6, (1951), S. 119–139.Google Scholar
  48. [48]
    Broomhead, D. S.; Lowe, D.: Multivariable functional interpolation and adaptive networks. in: Complex Systems, 2, (1988), S. 321–355.Google Scholar
  49. [49]
    Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: Nsga-ii. in: Proceedings of the 6th International Conference on Parallel Problem Solving from Nature PPSN VI. London: Springer, (2000), S. 849–858.CrossRefGoogle Scholar
  50. [50]
    Beume, N.; Naujoks, B.; Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. in: European Journal of Operational Research, 181/3, (2007), S. 1653–1669.CrossRefGoogle Scholar
  51. [51]
    Cuntze, R. G.: The predictive capability of failure mode concept-based strength criteria for multi-directional laminates part B. in: Composites Science and Technology, 64, (2004), S. 487–516.CrossRefGoogle Scholar
  52. [52]
    Nelder, J. A.; Mead, R.: A simplex method for function minimization. in: The Computer Journal, 7, (1965), S. 308–313.MathSciNetCrossRefGoogle Scholar
  53. [53]
    Schürmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden. Berlin, Heidelberg, New York: Springer, (2004).Google Scholar
  54. [54]
    Rozenberg, G.; Bäck, T.; Kok, J. N.: Handbook of Natural Computing. Bd. 4., Berlin, Heidelberg: Springer, (2012).Google Scholar
  55. [55]
    Zang, H.; Zhang, S.; Hapeshi, K.: A Review of Nature-Inspired Algorithms. in: Journal of Bionic Engineering, 7, (2010), S. 232–237.CrossRefGoogle Scholar
  56. [56]
    Schumacher, A.: Optimierung mechanischer Strukturen. Grundlagen und industrielle Anwendungen. Berlin, Heidelberg, New York: Springer, (2005).Google Scholar
  57. [57]
    Yang, X.-S.; Cui, Z.; Xiao, R.: Swarm Intelligence and Bio-Inspired Computation Theory and Applications. Amsterdam, Boston, Heidelberg: Elsevier, (2013).CrossRefGoogle Scholar
  58. [58]
    Zang, H.; Zhang, S.; Hapeshi, K.: A Review of Nature-Inspired Algorithms. in: Journal of Bionic Engineering, 7, (2010), S. 232–237.CrossRefGoogle Scholar
  59. [59]
    Kennedy, J.; Eberhart, R. C.: Particle swarm optimization. in: Proceedings of the 1995 IEEE International Conference on Neural Networks, 4, (1995), S. 1942–1948.Google Scholar
  60. [60]
    Yang, X.-S.; Deb, S.: Cuckoo Search via Lévy Flights. In: World Congress on Nature and Biologically Inspired Computing NaBIC 2009, Coimbatore, IEEE, (2009), S. 210–214.Google Scholar
  61. [61]
    Karaboga, D.; Basturk, B.: A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm. in: Journal of Global Optimization, 39, (2007), S. 459–471.MathSciNetCrossRefGoogle Scholar
  62. [62]
    Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. in: International Journal of Bio-Inspired Computation, 2, (2010), S. 78–84.CrossRefGoogle Scholar
  63. [63]
    Dorigo, M.: Optimization, Learning and Natural Algorithms. Dissertation, Politecnico di Milano, (1992).Google Scholar
  64. [64]
    Dorigo, M.; Stützle, T.: Ant Colony Optimization. Cambridge, London: The MIT Press, (2004).CrossRefGoogle Scholar
  65. [65]
    Neitzel, M.; Mitschang, P.: Handbuch Verbundwerkstoffe, Werkstoffe, Verarbeitung, Anwendung. 2. Aufl., München: Hanser, (2014).Google Scholar
  66. [66]
    Hannusch, S.; Herzog, R.; Hofmann, M.; Ihlemann, J.; Kroll, L.; Meyer, A.; Ospald, F.: Efficient Simulation, Optimization, and Validation of Lightweight Structures. in: Proceedings of the 2nd International MERGE Technologies Conference for Lightweight Structures, (2015), S. 219–227.Google Scholar
  67. [67]
    Hofmann, M.; Rünger, G.: Sustainability through flexibility: Building complex simulation programs for distributed computing systems. Special Issue on Techniques and Applications For Sustainable Ultrascale Computing Systems. in: Simulation Modelling Practice and Theory, 58/1, (2015), S. 65–78.CrossRefGoogle Scholar
  68. [68]
    Hofmann, M.; Ospald, F.; Schmidt, H.; Springer, R.: Programming Support for the Flexible Coupling of Distributed Software Components for Scientific Simulations. in: Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA 2014), Wien, (2014), S. 506–511.Google Scholar
  69. [69]
    Hofmann, M.; Rünger, G.; Seifert, T.: Transparent redirection of file-based data accesses for distributed scientific applications. 19th IEEE International Conference on Computational Science and Engineering (CSE 2016). IEEE, Paris, (2016).Google Scholar
  70. [70]
    Hofmann, M.; Rünger, G.: Efficient Data Redistribution Methods for Coupled Parallel Particle Codes. in: Proceedings of the 42nd International Conference on Parallel Processing ICPP-2013, Lyon, (2013), S. 40–49.Google Scholar
  71. [71]
    Hofmann, M.; Rünger, G.: In-place Algorithms for the Symmetric All-to-all Exchange with MPI. in: Recent Advances in the Message Passing Interface: 20th European MPI Users’ Group Meeting EuroMPI 2013, ACM (2013), S. 105–110.Google Scholar
  72. [72]
    Dietze, R.; Hofmann, M.; Rünger, G.: Exploiting Heterogeneous Compute Resources for Optimizing Lightweight Structures. in: Proceedings of the 2nd International Workshop on Sustainable Ultrascale Computing Systems, NESUS, (2015), S. 127–134.Google Scholar
  73. [73]
    Dietze, R.; Hofmann, M.; Rünger, G.: Water-Level scheduling for parallel tasks in computeintensive application components. in: Journal of Supercomputing, Special Issue on Sustainability on Ultrascale Computing Systems and Applications, 72/11, (2016) S. 4047–4068.CrossRefGoogle Scholar
  74. [74]
    Rauber, T.; Rünger, G.: Modeling and Analyzing the Energy Consumption of Fork-Join-based Task Parallel Programs. in: Concurrency and Computation: Practice and Experience, 27/1, (2015), S. 211–236.CrossRefGoogle Scholar
  75. [75]
    Rauber, T.; Rünger, G.; Schwind, M.; Xu, H.; Melzner, S.: Energy Measurement, Modeling, and Prediction for Processors with Frequency Scaling. in: Journal of Supercomputing, (2014).Google Scholar
  76. [76]
    Lang, J.; Rünger, G.: An execution time and energy model for an energy-aware execution of a conjugate gradient method with CPU/GPU collaboration. in: Journal of Parallel and Distributed Computing, 74/9, (2014), S. 2884–2897.CrossRefGoogle Scholar
  77. [77]
    Hofmann, M.; Jakobs, T.; Rünger, G.: Reducing the Power Consumption of Matrix Multiplications by Vectorization. 19th IEEE International Conference on Computational Science and Engineering (CSE 2016). IEEE Paris, (2016).Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Lothar Kroll
    • 1
  1. 1.Technische Universität Chemnitz Bundesexzellenzcluster MERGEChemnitzDeutschland

Personalised recommendations