Advertisement

Mikro- und Nanosystemintegration in Leichtbaustrukturen

  • Lothar Kroll
Chapter

Zusammenfassung

Die Funktionalisierung von Hybridstrukturen in Leichtbauanwendungen erlaubt nicht nur, die Masse noch weiter zu reduzieren, sondern auch neue Wege in der konstruktiven und technologischen Ausführung von intelligenten Leichtbauanwendungen zu beschreiten. Durch die Integration von Sensoren, Aktoren und Mikroelektronik lässt sich so die Funktionsdichte hybrider Leichtbaustrukturen deutlich erhöhen, was auch eine substanzielle Leistungssteigerung zur Folge hat. Diese Funktionsvielfalt erfordert die Entwicklung robuster Verfahren zur textilen und kunststofftechnischen Einbettung aktiver sowie passiver Elektronikkomponenten. Dabei wird das Ziel verfolgt, die wesentlichen aktorischen und sensorischen Effekte bei der Bauteilherstellung zu realisieren und gleichzeitig in einem massenproduktionstauglichen Prozess darzustellen. Dafür wird eine Kombination aus Insitu- und In-line-Verfahren genutzt, die beispielsweise das Spritzgießverfahren mit funktionalisierten Kunststoffschichten für elektrische Kontaktierung und das Massendruckverfahrenvereinigt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Wood, R.: A Discussion of Aerodynamic Control Effectors. AIAA paper 2002-3494, AIAA 1st Technical Conference and Workshop, Portsmouth, (2002).Google Scholar
  2. [2]
    Johnson, S.; van Dam, C. P.; Berg, D. E.: Active Load Control Techniques for Wind Turbines. Sandia Report, California, (2008).Google Scholar
  3. [3]
    Heinzelmann, B. S.: Strömungsbeeinflussung bei Rotorblättern von Windenergieanlagen mit Schwerpunkt auf Grenzschichtabsaugung. Dissertation, Technische Universität Berlin, (2011).Google Scholar
  4. [4]
    Maldonado, V.; Farnsworth, J.; Gressick, W.; Amitay, M.: Active control of flow separation and structural vibrations of wind turbine blades. in: Wind Energy, 13/2-3, (2010), S. 221–237.CrossRefGoogle Scholar
  5. [5]
    Kral, L. D.: Active Flow Control Technology. Washington University, St. Louis, Missouri: ASME Fluids Engineering Division Technical Brief, (1999).Google Scholar
  6. [6]
    Lutz, T.; Wolf, A.: Active Flow Control for Noise Reduction and Performance Improvement of Future Generation Wind Turbines. in: Proceedings of EAWE 2009 Conference, Durham University, USA (2009).Google Scholar
  7. [7]
    Bot, E. T. G.; Corten, G. P.; Schaak, P.: FluxFarm: A Program to Determine Energy Yield of Wind Turbines in a Wind Farm. ECN-C-06-029. ECN Wind Energy, (2006), S. 57.Google Scholar
  8. [8]
    Andersen, P. B.: Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge Flaps: Sensoring and Control. Ph.D. thesis, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde, Denmark, (2010).Google Scholar
  9. [9]
    Stalnov, O.; Kribus, A.; Seifert, A.: Evaluation of active flow control applied to wind turbine blade section. in: Journal of Re-newable and Sustainable Energy, 2/6, (2010).Google Scholar
  10. [10]
    Schüller, M.; Walther, M.; Lipowski, M.; Weigel, P.; Schulze, R.; Nestler, J.; Otto, T.: Integration concept for fluidic actuators in hybrid structures. in: Proceeding of the Smart System Integration Conference, (2014).Google Scholar
  11. [11]
    Barlas, T. K.; van Kuik, G. A. M.: Review of state of the art in smart rotor control research for wind turbines. in: Progress in Aerospace Sciences, 46/1, (2010), S. 1–27.CrossRefGoogle Scholar
  12. [12]
    Mohamed, G.: Modern Developments in Flow Control. in: Applied Mechanics Reviews, 49/7, (1996), S. 356–375.Google Scholar
  13. [13]
    Schueller, M.; Lipowski, M.; Schirmer, E.; Walther, M.; Otto, T.; Geßner, T.; Kroll, L.: Integration of fluidic jet actuators in composite structures. SPIE Active and Passive Smart Structures and Integrated Systems, San Diego, 2015 Apr 2; in: Proceedings, (2015), S. 9431–9437.Google Scholar
  14. [14]
    Lee, C.; et al.: A piezoelectrically actuated micro synthetic jet for active flow control. in: Sensors and Actuators A, 108, (2003), S. 168–174.CrossRefGoogle Scholar
  15. [15]
    Mello, Hilton C. de M.; Catalano, Fernando M.; Souza, Leandro F. de: Numerical study of synthetic jet actuator effects in boundary layers. in: Journal of the Brazilian Society of Mechanical Sciences and Engineerin, 29/1, (2007), S. 34–41.CrossRefGoogle Scholar
  16. [16]
    Amitay, M.; Smith, D. R.; Kibens, V.; Parekh, D. E.; Glezer, A.: Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. in: AIAA, 39, (2001), S. 361–370.CrossRefGoogle Scholar
  17. [17]
    Smith, B.; Glezer, A.: The formation and evolution of synthetic jets. in: Physics of Fluids, 31, (1998), S. 2281–2297.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Chen, F. J.; Yao, C.; Beeler, G. B.; Bryant, R. G.; Fox, R. L.: Development of synthetic jet actuators for active flow control at NASA Langley. in: AIAA, Paper 2000–2405, (2000).Google Scholar
  19. [19]
    Honohan, A. M.; Amitay, M.; Glezer, A.: Aerodynamic Control Using Synthetic Jets. in: AIAA, Paper 2000–2401, (2000).Google Scholar
  20. [20]
    McCormick, D.: Boundary Layer Separation Control with Directed Synthetic Jets. in: AIAA, Paper 2000–0519, (2000).Google Scholar
  21. [21]
    Lipowski, M.; Schueller, M.; Nestler, D.; Otto, T.; Gessner, T.: Development of Micro-Valves for Pulsed Jet Actuators. 8th International Exhibition on Smart Actuators and Drive Systems- Actuator, Bremen, (2014).Google Scholar
  22. [22]
    Schueller, M.; Lipowski, M.; Schirmer, E.; Walther, M.; Symmank, C.; Schmidt, A.; Kroll, L.: Fluidic actuators in composite structures: design, manufacturing, and life cycle-related evaluation. 2nd International MERGE Technologies Conference IMTC 2015 Lightweight Structures, Chemnitz, (2015), S. 257–263.Google Scholar
  23. [23]
    Berry, M.: Microcellular Injection Moulding. in: Myer, K.: Applied Plastics Engineering Handbook. Elsevier, (2011), S. 215–226.Google Scholar
  24. [24]
    Chen, S.-C.; Hsu, P.-S.; Hwang, S.-S.: The Effects of Gas Counter Pressure and Mold Temperature Variation on the Surface Quality and Morphology of the Microcellular Polystyrene Foams. in: Journal of Applied Polymer Science, (2013).Google Scholar
  25. [25]
    Lipowski, M.; Stiehl, C.; Schueller, M.; Nestler, D.; Otto, T.; Geßner, T.; Kroll, L.: Pulsed Jet Actuator development for the integration in composite structures. in: Proceedings of the Smart Systems Integration Conference, (2014).Google Scholar
  26. [26]
    Schueller, M.; Walther, M.; Tröltzsch, J.; Otto, T.; Mehner, J.; Geßner, T.; Kroll, L.: Smart System Integration Technologies for Lightweight Structures. in: Proceedings of the Smart Systems Integration Conference, (2014).Google Scholar
  27. [27]
    Götze, U.; Symmank, C.; Dressel, M.; Schueller, M.; Schmidt, A.; Lipowski, M.; Geßner, T.: Life cycle-oriented analysis and evaluation of Active Flow Control in wind turbines.in: International Journal of Condition Monitoring and Diagnostic Engineering Management, 18/3, (2015), S. 11–20.Google Scholar
  28. [28]
    Götze, U.; Schmidt, A.; Symmank, C.; Kräusel, V.; Rautenstrauch, A.: Zur Analyse und Bewertung von Produkt-Prozessketten-Kombinationen der hybriden Produktion. in: Neugebauer, R.; Götze, U.; Drossel, W.-G. (Hrsg.): Energetisch-wirtschaftliche Bilanzierung – Diskussion der Ergebnisse des Spitzentechnologieclusters eniProd. Auerbach: Wissenschaftliche Scripten, (2014), S. 2132.Google Scholar
  29. [29]
    Zönnchen, S.; Götze, U.: Bewertung des kommerziellen Potenzials neuartiger Werkstoffe - Methodische Ansätze am Beispiel funktionalisierter Kohlenstofffaserwerkstoffe. in: Wielage, B. (Hrsg.): Tagungsband zum 17. Werkstofftechnischen Kolloquium, (2014), S. 217–232.Google Scholar
  30. [30]
    Götze, U.; Schmidt, A.; Herold, F.; Nestler, D.; Siebeck, S.: Methodik zur Analyse, Prognose und Bewertung von innovativen Werkstoffen am Beispiel von partikelverstärkten Aluminium-matrix-Verbundwerkstoffen (AMCs). in: Gausemeier, J. (Hrsg.): Vorausschau und Technologieplanung zum 11. Symposium für Vorausschau und Technologieplanung, Berlin, Paderborn, (2015), S. 221–241.Google Scholar
  31. [31]
    Großmann, T. D.; Gaitzsch, M.; Hartwig, M.; Heinrich, M.; Symmank, C.; Schmidt, A.; Kurth, S.: Remote ice detection on rotor blades of wind turbines. 2nd International MERGE Technologies Conference IMTC 2015 Lightweight Structures, Chemnitz, (2015), S. 265–271.Google Scholar
  32. [32]
    Götze, U.: Investitionsrechnung. 7. Aufl., Berlin, Heidelberg: Springer, (2014).Google Scholar
  33. [33]
    Katzenberger, J.; Rautenstrauch, A..; Symmank, C.; Freund, R.; Schwerma, C.; Awiszus, B.; Kräusel, V.: Manufacturing of hybrid structures – multidimensional analysis for resourceefficient processes. in: Proceedings Euro Hybrid Materials and Structures, Stade, (2014), S. 172–181.Google Scholar
  34. [34]
    Götze, U.; Hertel, A.; Schmidt, A.; Päßler, E.; Kaufmann, J.: Integrated framework for life cycle-oriented evaluation of product and process technologies: Conceptual design and case study. in: Henriques, E.; Pecas, P.; Silva, A. (Hrsg.): Technology and Manufacturing Process Selection. London: Springer, (2014), S. 193–215.Google Scholar
  35. [35]
    Bierer, A.; Götze, U.; Meynerts, L.; Sygulla, R.: Integrating Life Cycle Costing and Life Cycle Assessment Using Extended Material Flow Cost Accounting. in: Journal of Cleaner Production, 108 Part B, (2015), S. 1289–1301.CrossRefGoogle Scholar
  36. [36]
    Hau, E.: Wind Turbines, 3. Aufl., Berlin, Heidelberg: Springer, (2013).CrossRefGoogle Scholar
  37. [37]
    Manwell, J. F.; McGowan, J. G.; Rogers, A. L.: Wind Energy Explained. 2. Aufl., Chichester: Wiley, (2010).Google Scholar
  38. [38]
    Twele, J.; Liersch, J.: Planning, operating and economics. in: Gasch, R.; Twele, J. (Hrsg.): Wind Power Plants. 2. Aufl., Berlin, Heidelberg: Springer, (2012), S. 480–519.Google Scholar
  39. [39]
    Walther, M.; Heinrich, M.; Symmank, C.; Schmidt, A.; Schüller, M.; Götze, U.; Geßner, T.: An Economic Lightweight Concept for the evaluation of thermoplastic foams for aerodynamic lightweight structures. in: International Journal of Condition Monitoring and Diagnostic Engineering Management, 19/1, (2016), S. 11–15.Google Scholar
  40. [40]
    Putz, M.; Götze, U.; Stoldt, J.; Franz, E.: Fostering energy efficiency by way of a technoeconomic framework. in: Proceedings 11th Global Conference on Sustainable Manufacturing (GCSM 2013): Innovative Solutions, 23.–25. September 2013, Berlin, (2013), S. 371–376.Google Scholar
  41. [41]
    Michler, P.: Single Semiconductor Quantum Dots. Berlin: Springer, (2008).Google Scholar
  42. [42]
    Koole, K.; Groeneveld, E.; Vanmaekelbergh, D.; Meijerink, A.; Donegá, C.: Nanoparticles: Workhorses of Nanoscience. Berlin: Springer, (2014).Google Scholar
  43. [43]
    Woo, W.-K.; Shimizu, K. T.; Jarosz, M. V.; Neuhauser, R. G.; Rubner, M. A.; Bawendi, M. G.: Room-temperature, tunable gain media from novel II-VI nanocrystal-titania composite matrices. in: Advanced Materials, 14, (2002). S. 739–743.CrossRefGoogle Scholar
  44. [44]
    Moebius, M.; Ma, X.; Martin, J.; Doty, M. F.; Otto, T.; Gessner, T.: Quantum Sensing and Nanophotonics Devices XII. in: Proceedings of SPIE 9370, San Francisco, (2015), S. 7–12.Google Scholar
  45. [45]
    Efros, Al. L.; Rosen, M.: Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot. in: Physical Review Letters, 78, (1997), S. 1110–1113.CrossRefGoogle Scholar
  46. [46]
    Huang, H.; Dorn, A.; Nair, G. P.; Bulovic, V.; Bawendi, M.: Bias induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors. in: Nano Letters, 7, (2007), S. 3781–3786.CrossRefGoogle Scholar
  47. [47]
    Coropceanu, V.; Cornil, J.; da Silva Filho DA; Olivier, Y.; Silbey, R.; Brédas J. L.: Charge transport in organic semiconductors. in: Chemical Reviews, 107, (2007), S. 926–952.CrossRefGoogle Scholar
  48. [48]
    Grabolle, M.; Ziegler, J.; Merkulov, A.; Nann, T.; Resch-Genger, U.: Stability and fluorescence quantum yield of CdSe-ZnS quantum dots--influence of the thickness of the ZnS shell. in: Annals of the New York Academy of Sciences, 1130, (2008), S. 235–241.Google Scholar
  49. [49]
    Can GmbH Hamburg: Center for Applied Nanotechnology CANdots Series. A plus - Technisches Datenblatt. URL: http://can-hamburg.de/for, (Zugriff: 23.10.2016).
  50. [50]
    Hildebrandt, A.; Pfaff, U.; Lang, H.: 5-Membered heterocycles with directly-bonded sandwich and half-sandwich termini as multi-redox systems: synthesis, reactivity, electrochemistry, structure and bonding. in: Reviews in Inorganic Chemistry, 31/2–3, (2011), S. 111–114.Google Scholar
  51. [51]
    Hildebrandt, A.; Lang, H.: (Multi)ferrocenyl Five-Membered Heterocycles: Excellent Connecting Units for Electron Transfer Studies. in: Organometallics, 32, (2013), S. 5640–5653.CrossRefGoogle Scholar
  52. [52]
    Speck, J. M.; Schaarschmidt, D.; Lang, H.: Atropisomeric 3,3′,4,4′,5,5′-Hexaferrocenyl-2,2′- bithiophene: Synthesis, Solid-State Structure, and Electrochemistry. in: Organometallics, 31, (2012), S. 1975–1982.CrossRefGoogle Scholar
  53. [53]
    Beaujuge, P. M.; Vasilyeva, S. V.; Liu, D. Y.; Ellinger, S.; McCarley, T. D.; Reynolds J. R.: Structure-Performance Correlations in Spray-Processable Green Dioxythiophene-Benzothiadiazole Donor–Acceptor Polymer Electrochromes. in: Chemistry of Materials, 24, (2012), S. 255–268.CrossRefGoogle Scholar
  54. [54]
    Arias-Pardilla, J.; Giménez-Gómez, P. A.; de la Pena, A.; Segura, J. L.; Otero, T. F.: Synthesis, electropolymerization and characterization of a cross-linked PEDOT derivative. in: Journal of Materials Chemistry, 22 (2012), S. 4944–4952.CrossRefGoogle Scholar
  55. [55]
    Jahn, S. F.; Jakob, A.; Blaudeck, T.; Ecorchard, P.; Rüffer, T.; Schmidt, P.; Baumann, R.; Lang, H.: Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. in: Chemistry of Materials, 22/10, (2010), S. 3067–3071.CrossRefGoogle Scholar
  56. [56]
    Oestreicher, A.; Röhrich, T.; Wilden, J.; Lerch, M.; Jakob, A.; Lang, H.: An innovative method for joining materials at low temperature using silver (nano)particles derived from [AgO2C(CH2OCH2)3H] in: Applied Surface Science, 265, (2013), S. 239–244.CrossRefGoogle Scholar
  57. [57]
    Tuchscherer, A.; Schaarschmidt, D.; Schulze, S.; Hietschold, M.; Lang, H.: Simple and efficient: Gold nanoparticles from triphenylphosphane gold(I) carboxylates without addition of any further stabilizing and reducing agent. in: Inorganic Chemistry Communications, 14/5, (2011), S. 676–678.CrossRefGoogle Scholar
  58. [58]
    Tuchscherer, A.; Schaarschmidt, D.; Schulze, S.; Hietschold, M.; Lang, H.: Simple and Efficient: Ethylene Glycol Isonitrile Gold(I) Chlorides for the Formation and Stabilization of Gold Nanoparticles. in: European Journal of Inorganic Chemistry, 28, (2011), S. 4421–4428.CrossRefGoogle Scholar
  59. [59]
    Tu, S.; Wang, Y.; Lan, J.; Zheng, Q.; Wie, J.; Chen, S.: Tuning of electrochromic properties by copolymerization of monoalkoxythiophenes and dialkoxythiophenes. in: journal of Applied Polymer Science. 124/3, (2012), S. 2625–2631.CrossRefGoogle Scholar
  60. [60]
    Hundt, N.; Palaniappan, K.; Sisla, P.; Murphy, J. W.; Hao, J.; Nguyen, H.; Stein, E.; et al.: Synthesis and characterization of polythiophenes with alkenyl substituents. in: Polymer Chemistry, 1, (2010), S. 1624–1632.CrossRefGoogle Scholar
  61. [61]
    Godeau, G.; N‘Na, J.; El Kout, E.; Trad, R. B.; Darmanin, T.; El Kateb, M.; Beji, M.; et al.: Staudinger–Vilarassa reaction versus Huisgen reaction for the control of surface hydrophobicity and water adhesion. in: Polymer Advanced Technologies, 27/8, (2016), S. 993–998.CrossRefGoogle Scholar
  62. [62]
    Lukác, M.; Garajová, M.; Mrva, M.; Devínsky, F.; Ondriska, F.; Kubincová, J.: Novel fluorinated dialkylphosphonatocholines: Synthesis, physicochemical properties and antiprotozoal activities against Acanthamoeba spp. in: Journal of Fluorine Chemistry, 164, (2014), S. 10–17.CrossRefGoogle Scholar
  63. [63]
    Speck, J. M.: Elektronentransferstudien an Übergangsmetall-funktionalisierten, oligo-heterocyclischen Systemen. Dissertation, Technische Universität Chemnitz, Chemnitz, (2016).Google Scholar
  64. [64]
    Moebius, M.; Martin, J.; Hartwig, M.; Baumann R. R.; Otto, T.; Gessner T.: Using quantum dot photoluminescence for load detection. in: AIP Advances, 6/8, 085309, (2016).CrossRefGoogle Scholar
  65. [65]
    Coe-Sullivan, S.; Steckel, J. S.; Woo, W.-K.; Bawendi, M. G.; Bulović. V.: Large‐Area Ordered Quantum‐Dot Monolayers via Phase Separation During Spin‐Casting. in: Advanced Functional Materials, 15, (2005), S. 1117–1124.CrossRefGoogle Scholar
  66. [66]
    Lambert, K.; Čapek, R. K.; Bodnarchuk, M. I.; Kovalenko, M. V.; Van Thourhout, D.; Heiss, W.; Hens, Z.: Langmuir−Schaefer Deposition of Quantum Dot Multilayers. in: Langmuir−Schaefer Deposition of Quantum Dot Multilayers, 26/11, (2010), S. 7732–7736.CrossRefGoogle Scholar
  67. [67]
    Hartwig, M.; Ortlepp, F.; Moebius, M.; Martin, J.; Otto, T.; Gessner, T.; Baumann, R. R.: Inkjet-printed quantum dot-based sensor for structural health monitoring. in: MRS Online Proceedings Library 1788, MRS Spring Meeting 2015, San Francisco, USA, (2015).Google Scholar
  68. [68]
    Sridhar, A.; Blaudeck, T.; Baumann, R. R.: Inkjet printing as a key enabling technology for printed electronics. in: Material Matters, 6/1, (2011), S. 12–15.Google Scholar
  69. [69]
    Perelaer, J.; Hendriks, C. E.; de Laat, A. W. M.; Schubert, U. S.: One-step inkjet printing of conductive silver tracks on polymer substrates. in: Nanotechnology, 20/16, 165303, (2009).Google Scholar
  70. [70]
    Sowade, E.; Kang, H.; Mitra, K. Y.; Weiß, O. J.; Weber, J.; Baumann R. R.: Roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second. in: Journal of Materials Chemistry C, 3, (2015), S. 11815–11826.CrossRefGoogle Scholar
  71. [71]
    Kipphan, H.: Handbuch der Printmedien: Technologien und Produktionsverfahren. Berlin: Springer, (2000).CrossRefGoogle Scholar
  72. [72]
    Krebs, F. C.; Carlé, J. E.; Cruys-Bagger, N.; Andersen, M.; Lilliedal, M. R.; Hammond, M. A.; Hvidt, S.: Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminium devices. in: Solar Energy Materials & Solar Cells, 86/4, (2005), S. 499–516.Google Scholar
  73. [73]
    Yang, Y.; Brenner, K.; Murali, R.: The influence of atmosphere on electrical transport in grapheme. in: Carbon, 50/5, (2012), S. 1727–1733.Google Scholar
  74. [74]
    Abad, E.: Energy Level Alignment and Electron Transport Through Metal/Organic Contacts: From Interfaces to Molecular Electronics. Heidelberg N. Y.: Springer, (2013).CrossRefGoogle Scholar
  75. [75]
    Hüfner, S.: Photoelectron Spectroscopy: Principles and Applications. 3. Aufl., Berlin: Springer, (2003).CrossRefGoogle Scholar
  76. [76]
    Zahn, D. R. T.; Gavrila, G.; Gorgoi, M.: The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission. in: Chemical Physics, 325, (2006), S. 99–112.CrossRefGoogle Scholar
  77. [77]
    Haidu, F.: Tailoring the Electronic and Optical Properties of Molecular Thin Films by Reducing and Oxidising Agents. Dissertation. Technische Universität Chemnitz, (2014).Google Scholar
  78. [78]
    Hwang, J.; Amy, F.; Kahn, A.: Spectroscopic study on sputtered PEDOT PSS: Role of surface PSS layer. in: Organic Electronics, 7, (2006), S. 387–396.CrossRefGoogle Scholar
  79. [79]
    Wang, S.; Yang, S.; Yang, C.; Li, Z.; Wang, J.; Ge, W.: Poly(N-vinylcarbazole) (PVK) Photoconductivity Enhancement Induced by Doping with CdS Nanocrystals through Chemical Hybridization. in.: The Journal of Physical Chemistry B, 104/50, (2000), S. 11853–11858.Google Scholar
  80. [80]
    Cai, J.; Qiu, L.; Yuan, S.; Shi, L.; Liu, P.; Liang, D.: Structural Health Monitoring for Composite Materials. in: Hu, N. (Hrsg.): Composites and their Applications. London: INTECH, (2012).Google Scholar
  81. [81]
    Tani, A.; Yamabe, Y.; Murakami M.; Ugaji, M.: Fundamental Tests on Structural Health Monitoring Systems by Using RFID TAG With Sensors. 14th World Conference on Earthquake Engineering, Beijing, China, (2008).Google Scholar
  82. [82]
    Sun, Z.; Rocha, B.; Wu, K.-T.; Mrad, N.: A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring. in: International Journal of Aerospace Engineering, (2013).Google Scholar
  83. [83]
    Melik, R.; et al.: Metamaterial-based wireless strain sensors. in: Applied Physics Letters, 95, (2009).CrossRefGoogle Scholar
  84. [84]
    Li, J.; et al.: Metamaterial-Based Strain Sensors. ISSNIP 2011, IEEE (2011).Google Scholar
  85. [85]
    LIEDTKE Kunststofftechnik: Werkstoffdatenblatt PET. URL: http://www.l-kt.de/Liedtke3-Werkstoffdatenblaetter.html, (Zugriff: 5.12.2016).
  86. [86]
    RUHRLAND – Stopfbüchsen Packung GmbH: Stoffblatt – E – Glas. URL: http://www.ruhrland-gmbh.com/files/datenblaetter/E%20GLAS.pdf, (Zugriff: 5.12.2016).
  87. [87]
    fibretech composites: Verstärkungsfasern. http://www.fibretech-composites.de/downloads/1_verstaerkungsfasernpdf.pdf, (Zugriff: 5.12.2016).
  88. [88]
  89. [89]
    Kipphan, H.: Druckverfahren. Handbuch der Printmedien. Berlin: Springer, (2001).Google Scholar
  90. [90]
    Gebrauchsanleitung DMP 2831. URL: https://www.seas.upenn.edu/~nanosop/documents/DMP2831_User_Manual.pdf, (Zugriff: 30.11.2016)
  91. [91]
    Hartwig, M.; Gaitzsch, M.; Großmann, T. D.; Heinrich, M.; Kroll, L.; Gessner, T.; Baumann, R. R.: Investigation on an Inkjet Printed Passive Sensor for Wireless Ice Detection on Wind Rotor Blades. in: Journal of Imaging Science and Technology, 60/4, (2016), S. 40402-1–40402-7.CrossRefGoogle Scholar
  92. [92]
    Hartwig, M.; Gaitzsch, M.; Heinrich, M.; Großmann, T. D.; Heinrich, M.; Kroll, L.; Gessner, T.; Baumann R. R.: Printing of conductive patterns for application in smart lightweight structures. SSI 2015, Copenhagen, Denmark, (2015).Google Scholar
  93. [93]
    Rosu, I.: Microstrip, Stripline, and CPW Design. YO3DAC / VA3IUL.Google Scholar
  94. [94]
    Das, N. K.; Voda, S. M.; Pozar, D. M.: Two Methods for the Measurement of Substrate Dielectric Constant. IEEE, (1987), S. 636–642.Google Scholar
  95. [95]
    Chang, K.; Hsieh, L.-H.: Microwave Ring Circuits and Related Structures. Hoboken, NJ: John Wiley & Sons, (2004).Google Scholar
  96. [96]
    Arslanagic, S.; Hansen, T. V.; Mortensen, N. A.; Gregersen, A. H.; Sigmund, O.; Ziolkowski, R. W.; Breinbjerg, O.: A Review of the Scattering-Parameter Extraction Method with Clarification of Ambiguity Issues in Relation to Metamaterial Homogenization. in: IEEE Antennas and Propagation Magazine, 55/2, (2013), S. 91–106.CrossRefGoogle Scholar
  97. [97]
    Denlinger, E. J.: Losses of Microstrip Lines. in: IEEE Transactions on Microwave Theory and Techniques MTT, 28/6, (1980), S. 513–522.CrossRefGoogle Scholar
  98. [98]
    Pucel, R. A.; Massé, D. J.; Hartwig, C. P.: Losses in Microstrip. in: IEEE Transactions on Microwave Theory and Techniques MTT, 16/6, (1968), S. 342–350.CrossRefGoogle Scholar
  99. [99]
    Wheeler, H. A.: Transmission-Line Properties of a Strip on a Dielectric Sheet on a Plane. in: IEEE Transactions on Microwave Theory and Techniques MTT, 25/8, (1977), S. 631–647.CrossRefGoogle Scholar
  100. [100]
    Rashidian, A.; Aligodarz, M. T.; Klymyshyn, D. M.: Dielectric Characterization of Materials using a Modified Microstrip Ring Resonator Technique. in: IEEE Transactions on Dielectrics and Electrical Insulation, 19/4, (2012).CrossRefGoogle Scholar
  101. [101]
    Produktspezifikation „Silverjet DGP-40LT-15C”. URL: http://www.sigmaaldrich.com/catalog/product/aldrich/736465?lang=de&region=DE, (Zugriff: 15.12.2016).
  102. [102]
    [PFI2016] Product Data Sheet „PFI-722 Conductive Flexo Ink“. URL: http://nanopchem.com/wp-content/uploads/file/DataSheets/PFI-722%20Data%20Sheet.pdf, (Zugriff: 15.12.2016).
  103. [103]
    [Melinex401] Product Information „Melinex® 401 CW“. URL: http://www.doganak.com/wp-content/uploads/2014/07/Melinex%C2%AE-401CW.pdf, (Zugriff: 15.12.2016).
  104. [104]
    [Novele220] Tools and Materials for Printed Electronics „Novele™ IJ-220“. URL: https://store.novacentrix.com/v/vspfiles/assets/images/novele%20ij-220_2212.2.pdf, (Zugriff: 15.12.2016).
  105. [105]
    Schulze, R.; Streit, P.; Fischer, T.; Tsapkolenko, A.; Heinrich, M.; Sborikas, M.; Kroll, L.: Fiber-reinforced Composite Structures with Embedded Piezoelectric Sensors. in: IEEE SENSORS 2014, Valencia, Spanien, (2014), S. 1563–1566.Google Scholar
  106. [106]
    Schulze, R.; Heinrich, M.; Nossol, P.; Forke, R.; Sborikas, M.; Tsapkolenko, A.; Billep, D.: Piezoelectric P (VDF-TrFE) transducers assembled with micro injection molded polymers. in: Sensors and Actuators A: Physical, 208, (2014), S. 159–165.CrossRefGoogle Scholar
  107. [107]
    Sorger, A.; Auerswald, C.; Shaporin, A.; Freitag, M.; Dienel, M.; Mehner, J.: Design, Modeling, Fabrication and Characterization of a MEMS Acceleration Sensor for Acoustic Emission Testing. 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2013), Barcelona, (2013), S. 726–729.Google Scholar
  108. [108]
    Schaufuß, J.; Decker, R.; Walther, M.; Tsapkolenko, A.; Dienel, M.; Schüller, M.; Kroll, L.: Entwicklung eines intelligenten, textilen Halbzeugs. 12. Chemnitzer Fachtagung Mikrosystemtechnik & Mikroelektronik, Chemnitz, (2014).Google Scholar
  109. [109]
    Schindler-Saefkow, F.; Rost, F.; Otto, A.; Faust, W.; Wunderle, B.; Michel, B.; Rzepka, S.: Stress chip measurements of the internal package stress for process characterization and health monitoring. 13th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cascais, Portugal, (2012), S. 1/10–10/10.Google Scholar
  110. [110]
    Nossol, P.; Gliniorz, R.; Kroll, L.; Heinrich, M.: Applications of modal analysis for examining structural state of synthetic-fibre nonwoven composites. in: composites Theory and Practice, 15/3, (2015), S. 130–136.Google Scholar
  111. [111]
    Auerswald, C.: Mikromechanischer Körperschall-Sensor zur Strukturüberwachung. Dissertation, Technische Universität Chemnitz, (2016).Google Scholar
  112. [112]
    Sommer, R.; Freitag, M.; Schaufuss, J.; Sorger, A.; Mehner, J.: Improved MEMS AE sensors in HARM technology. 11th International Multi-Conference on Systems, Signals & Devices SSD 2014, Barcelona, (2014), S. 1–4.Google Scholar
  113. [113]
    Wallasch, R.; Tirschmann, R.; Spieler, M.; Nendel, W.; Kroll, L.: Pilotanlage der Orbitalwickeltechnologie für die kontinuierliche Fertigung endlosfaserverstärkter Strukturbauteile. 15. Chemnitzer Textiltechniktagung, Chemnitz, (2016), S. 247–255.Google Scholar
  114. [114]
    Kroll, L.; Elsner, H.; Heinrich, M.: Sticktechnologische Herstellung von Sensorstrukturen in textilen Trägermaterialien. in: Melliand Textilberichte: European Textile Journal, 89/1–2, (2008), S. 26–27.Google Scholar
  115. [115]
    Heinrich, M.; Decker, R.; Schaufuss, J.; Troeltzsch, J.; Mehner, J.; Kroll, L.: Electrical contact properties of micro-injection molded Polypropylene/CNT/CB-composites on metallic electrodes. in: Advanced Materials Research, 1103, (2015), S. 77–83.CrossRefGoogle Scholar
  116. [116]
    Niedziela, D.; Tröltzsch, J.; Latz, A.; Kroll, L.: On the numerical simulation of injection molding processes with integrated textile fiber reinforcements. in: Journal of Thermoplastic Composite Materials, 26/1, (2013), S. 74−90.CrossRefGoogle Scholar
  117. [117]
    Heinrich, M.; Sichting, F.; Kroll, L.: Microinjection molding of polypropylene (PP) filled with MWCNT: Influence of processing parameters on the mechanical properties. Nanotechnology Materials and Devices Conference (NMDC), Honolulu, (2012), S. 111–115.Google Scholar
  118. [118]
    Schindler-Saefkow, F.; Rost, F.; Rezaie-Adli, A.; Jansen, K. M. B.; Wunderle, B.; Keller, J.; Rzepka, S.: Measuring the mechanical relevant shrinkage during in-mold and post-mold cure with the stress chip. 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Gent, (2014), S. 5.Google Scholar
  119. [119]
    Schindler-Saefkow, F.; Rost, F.; Schingale, A.; Wolf, D.; Wunderle; B.; Keller, J.; Michel, B.: Measurements of the mechanical stress induced in flip chip dies by the underfill and simulation of the underlying phenomena of thermal-mechanical and chemical reactions. Electronics System-Integration Technology Conference (ESTC), Helsinki, (2014).Google Scholar
  120. [120]
    Rost, F.; Schindler-Saefkow, F.; Vogel, D.; Rezaie Adli, A.; Jansen, K. M. B.; Rzepka, S.; Michel, B.: Material parameter identification by combination of stress chip measurements and FE-simulation in MERGE. Smart Systems Integration conference, Wien, (2014).Google Scholar
  121. [121]
    Brueckner, J.; Auerswald, E.; Dudek, R.; Wunderle, B.; Michel, B.; Rzepka, S.: Statistical strength investigation of poly-silicon membranes using microscopic loading tests and numerical simulation. Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Cannes, (2014), S. 6.Google Scholar
  122. [122]
    Rost, F.: Mechanical stress induced in Si sensors during bonding and packaging processes. Smart Systems Integration 2015, Kopenhagen, (2015).Google Scholar
  123. [123]
    Nossol, P.; Schaufuss, J.; Tsapkolenko, A.; Rost, F.; Arnold, B.; Kroll, L.; Mehner, J.: Preliminary Investigations of Processing Impact on Microelectronic Devices by Injection Moulding Technology. 2nd International MERGE Technologies Conference (IMTC 2015), Chemnitz, (2015), S. 293–302.Google Scholar
  124. [124]
    Rost, F.: Mechanical in-situ characterization of micro systems during encapsulation and integration processes in structural components. 6th Electronics System-Integration Technology Conference, Grenoble, (2016).Google Scholar
  125. [125]
    Sorger, A.; Auerswald, C.; Shaporin, A.; Dienel, M.; Mehner, J.: Design, Characterization and Test of a MEMS Acoustic Emission Sensor. Smart Systems Integration for Micro- and Nanotechnologies. Dresden: Goldbogen Verlag, (2014).Google Scholar
  126. [126]
    Freitag, M.; Auerswald, C.; Wolf, P.; Sorger, A.; Dienel, M.; Shaporin, A.; Mehner, J.: Entwurf und Test von Acoustic Emission Sensoren basierend auf dem MEMS-Bandpass-Prinzip. 6. Mikrosystemtechnikkongress MEMS, Mikroelektronik, Systeme, Karlsruhe, (2015).Google Scholar
  127. [127]
    Auerswald, C.; Freitag, M.; Mehner, J.: Mikromechanischer Körperschall-Sensor. 13. Chemnitzer Fachtagung Mikromechanik und Mikroelektronik, Chemnitz, (2016).Google Scholar
  128. [128]
    Freitag, M.; Mehner, J.: Finite Elemente Simulation von Schall in festen Körpern zur Untersuchung der Qualität einer AE-Sensor-Ankopplung. 13. Chemnitzer Fachtagung Mikromechanik und Mikroelektronik, Chemnitz, (2016).Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Lothar Kroll
    • 1
  1. 1.Technische Universität Chemnitz Bundesexzellenzcluster MERGEChemnitzDeutschland

Personalised recommendations