Sequential Convex Programming for the Efficient Verification of Parametric MDPs

  • Murat Cubuktepe
  • Nils Jansen
  • Sebastian Junges
  • Joost-Pieter Katoen
  • Ivan Papusha
  • Hasan A. Poonawala
  • Ufuk Topcu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10206)

Abstract

Multi-objective verification problems of parametric Markov decision processes under optimality criteria can be naturally expressed as nonlinear programs. We observe that many of these computationally demanding problems belong to the subclass of signomial programs. This insight allows for a sequential optimization algorithm to efficiently compute sound but possibly suboptimal solutions. Each stage of this algorithm solves a geometric programming problem. These geometric programs are obtained by convexifying the nonconvex constraints of the original problem. Direct applications of the encodings as nonlinear programs are model repair and parameter synthesis. We demonstrate the scalability and quality of our approach by well-known benchmarks.

References

  1. 1.
    Satia, J.K., Lave Jr., R.E.: Markovian decision processes with uncertain transition probabilities. Oper. Res. 21(3), 728–740 (1973)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number generation. In: Traub, J.F. (ed.) Algorithms and Complexity: New Directions and Recent Results, p. 375. Academic Press, Cambridge (1976)Google Scholar
  3. 3.
    Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. J. Algorithms 15(1), 441–460 (1990)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link protocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 127–165. Springer, Heidelberg (1994). doi:10.1007/3-540-58085-9_75 CrossRefGoogle Scholar
  5. 5.
    Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Han, J., Jonker, P.: A system architecture solution for unreliable nanoelectronic devices. IEEE Trans. Nanotechnol. 1, 201–208 (2002)CrossRefGoogle Scholar
  7. 7.
    Boyd, S., Kim, S.-J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Boyd, S.: Sequential convex programming. Lecture Notes (2008)Google Scholar
  9. 9.
    Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. LMCS 4(4), 50–65 (2008)MathSciNetMATHGoogle Scholar
  10. 10.
    Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization. Comput. Chem. Eng. 33(3), 575–582 (2009)CrossRefGoogle Scholar
  11. 11.
    Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6_56 CrossRefGoogle Scholar
  12. 12.
    Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. STTT 13(1), 3–19 (2010)CrossRefGoogle Scholar
  13. 13.
    Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19835-9_30 CrossRefGoogle Scholar
  14. 14.
    Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19835-9_11 CrossRefGoogle Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
  16. 16.
    Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 317–332. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Jovanović, D., Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3_27 CrossRefGoogle Scholar
  18. 18.
    Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: QEST, pp. 203–204. IEEE CS (2012)Google Scholar
  19. 19.
    Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair for Markov decision processes. In: TASE, pp. 85–92. IEEE CS (2013)Google Scholar
  20. 20.
    Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_35 CrossRefGoogle Scholar
  21. 21.
    Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter synthesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12982-2_7 Google Scholar
  22. 22.
    Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06410-9_22 CrossRefGoogle Scholar
  23. 23.
    Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.-P., Becker, B.: Accelerating parametric probabilistic verification. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10696-0_31 Google Scholar
  24. 24.
    Su, G., Rosenblum, D.S.: Nested reachability approximation for discrete-time Markov chains with univariate parameters. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 364–379. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11936-6_26 Google Scholar
  25. 25.
    Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4_13 CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy approach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17524-9_21 Google Scholar
  28. 28.
    Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: The probabilistic model checker storm (extended abstract). CoRR, abs/1610.08713 (2016)Google Scholar
  30. 30.
    Delgado, K.V., de Barros, L.N., Dias, D.B., Sanner, S.: Real-time dynamic programming for Markov decision processes with imprecise probabilities. Artif. Intell. 230, 192–223 (2016)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Katoen, J.-P.: The probabilistic model checking landscape. In: IEEE Symposium on Logic In Computer Science (LICS). ACM (2016)Google Scholar
  32. 32.
    Long, F., Rinard, M.: Automatic patch generation by learning correct code. In: POPL, pp. 298–312. ACM (2016)Google Scholar
  33. 33.
    Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Heidelberg (2016). doi:10.1007/978-3-319-46520-3_4 CrossRefGoogle Scholar
  34. 34.
    Su, G., Rosenblum, D.S., Tamburrelli, G.: Reliability of run-time QOS evaluation using parametric model checking. In: ICSE. ACM (2016, to appear)Google Scholar
  35. 35.
    MOSEK ApS: The MOSEK optimization toolbox for PYTHON. Version 7.1 (Revision 60) (2015)Google Scholar
  36. 36.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  37. 37.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)MATHGoogle Scholar
  38. 38.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)CrossRefMATHGoogle Scholar
  39. 39.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Murat Cubuktepe
    • 1
  • Nils Jansen
    • 1
  • Sebastian Junges
    • 2
  • Joost-Pieter Katoen
    • 2
  • Ivan Papusha
    • 1
  • Hasan A. Poonawala
    • 1
  • Ufuk Topcu
    • 1
  1. 1.The University of Texas at AustinAustinUSA
  2. 2.RWTH Aachen UniversityAachenGermany

Personalised recommendations