Optimal Translation of LTL to Limit Deterministic Automata

  • Dileep KiniEmail author
  • Mahesh Viswanathan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10206)


A crucial step in model checking Markov Decision Processes (MDP) is to translate the \(\mathrm {LTL}\) specification into automata. Efforts have been made in improving deterministic automata construction for LTL but such translations are double exponential in the worst case. For model checking MDPs though limit deterministic automata suffice. Recently it was shown how to translate the fragment \(\mathrm {LTL}{}{\setminus }{G}{U}\) to exponential sized limit deterministic automata which speeds up the model checking problem by an exponential factor for that fragment. In this paper we show how to construct limit deterministic automata for full LTL. This translation is not only efficient for \(\mathrm {LTL}{}{\setminus }{G}{U}\) but for a larger fragment \(\mathrm {LTL}_\mathrm{D}\) which is provably more expressive. We show experimental results demonstrating that our construction yields smaller automata when compared to state of the art techniques that translate LTL to deterministic and limit deterministic automata.


Model Check Markov Decision Process Linear Temporal Logic Input Symbol Model Check Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. ACM Trans. Comput. Logic 5(1), 1–25 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Babiak, T., Blahoudek, F., Křetínský, M., Strejček, J.: Effective translation of LTL to deterministic Rabin automata: beyond the (F,G)-fragment. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-02444-8_4 CrossRefGoogle Scholar
  4. 4.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Esparza, J., Křetínský, J.: From LTL to deterministic automata: a safraless compositional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 192–208. Springer, Cham (2014). doi: 10.1007/978-3-319-08867-9_13 Google Scholar
  6. 6.
    Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model checking without determinisation. In: CONCUR, pp. 354–367 (2015)Google Scholar
  7. 7.
    Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006). doi: 10.1007/11874683_26 CrossRefGoogle Scholar
  8. 8.
    Kini, D., Viswanathan, M.: Limit deterministic and probabilistic automata for \(\text{ LTL }{\setminus }\text{ GU }\). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 628–642. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_57 Google Scholar
  9. 9.
    Kini, D., Viswanathan, M.: Optimal translation of LTL to limit deterministic automata. Technical report, University of Illinois at Urbana-Champaign (2017).
  10. 10.
    Klein, J., Baier, C.: Experiments with deterministic \(\omega \)-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata good for probabilistic model checking? In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 453–465. Springer, Cham (2014). doi: 10.1007/978-3-319-04921-2_37 CrossRefGoogle Scholar
  12. 12.
    Komárková, Z., Křetínský, J.: Rabinizer 3: safraless translation of LTL to small deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 235–241. Springer, Cham (2014). doi: 10.1007/978-3-319-11936-6_17 Google Scholar
  13. 13.
    Křetínský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31424-7_7 CrossRefGoogle Scholar
  14. 14.
    Křetínský, J., Garza, R.L.: Rabinizer 2: small deterministic automata for \(\text{ LTL }{\setminus }\text{ GU }\). In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 446–450. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-02444-8_32 CrossRefGoogle Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
  16. 16.
    Morgenstern, A., Schneider, K.: From LTL to symbolically represented deterministic automata. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 279–293. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78163-9_24 CrossRefGoogle Scholar
  17. 17.
    Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: VMCAI, pp. 279–293 (2006)Google Scholar
  18. 18.
    Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2005). doi: 10.1007/11609773_24 CrossRefGoogle Scholar
  19. 19.
    Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sickert, S., Esparza, J., Jaax, S., Křetínský, J.: Limit-deterministic Büchi automata for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 312–332. Springer, Cham (2016). doi: 10.1007/978-3-319-41540-6_17 Google Scholar
  21. 21.
    Sickert, S., Křetínský, J.: MoChiBA: probabilistic LTL model checking using limit-deterministic Büchi automata. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 130–137. Springer, Cham (2016). doi: 10.1007/978-3-319-46520-3_9 CrossRefGoogle Scholar
  22. 22.
    Vardi, M., Wolper, P., Sistla, A.P.: Reasoning about infinite computation paths. In: FOCS (1983)Google Scholar
  23. 23.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of FOCS, pp. 327–338 (1985)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations