Almost Event-Rate Independent Monitoring of Metric Temporal Logic

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10206)


A monitoring algorithm is trace-length independent if its space consumption does not depend on the number of events processed. The analysis of many monitoring algorithms has aimed at establishing trace-length independence. But a trace-length independent monitor’s space consumption can depend on characteristics of the trace other than its size.

We put forward the stronger notion of event-rate independence, where the monitor’s space usage does not depend on the event rate. This property is critical for monitoring voluminous streams of events arriving at a varying rate. Some previously proposed algorithms for past-only temporal logics satisfy this new property. However, when dealing with future operators, the traditional approach of using a queue to wait for future obligations to be resolved is not event-rate independent. We propose a new algorithm that supports metric past and bounded future operators and is almost event-rate independent, where “almost” denotes a logarithmic dependence on the event rate: the algorithm must store the event rate as a number. We compare our algorithm with traditional ones, providing evidence that almost event-rate independence matters in practice.


  1. 1.
    Aerial: An almost event-rate independent monitor for metric temporal logic (2016).
  2. 2.
    Basin, D.A., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric first-order temporal properties. In: FSTTCS 2008, pp. 49–60 (2008)Google Scholar
  3. 3.
    Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal properties. J. ACM 62(2), 15 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29860-8_20 CrossRefGoogle Scholar
  5. 5.
    Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40787-1_4 CrossRefGoogle Scholar
  6. 6.
    Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Log. Comput. 20(3), 651–674 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Du, X., Liu, Y., Tiu, A.: Trace-length independent runtime monitoring of quantitative policies in LTL. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 231–247. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19249-9_15 CrossRefGoogle Scholar
  8. 8.
    Furia, C.A., Spoletini, P.: Bounded variability of metric temporal logic. In: Cesta, A., Combi, C., Laroussinie, F. (eds.) TIME 2014, pp. 155–163. IEEE Computer Society (2014)Google Scholar
  9. 9.
    Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: a case study in the android operating system. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 296–311. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06410-9_21 CrossRefGoogle Scholar
  10. 10.
    Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0_24 CrossRefGoogle Scholar
  11. 11.
    Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11164-3_15 Google Scholar
  12. 12.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  13. 13.
    Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr. Program. 78(5), 293–303 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer, Heidelberg (2005). doi:10.1007/11603009_2 CrossRefGoogle Scholar
  15. 15.
    McAfee, A., Brynjolfsson, E.: Big data: the management revolution. Harv. Bus. Rev. 90(10), 61–67 (2012)Google Scholar
  16. 16.
    Nipkow, T.: Boolean expression checkers. Archive of Formal Proofs (2014).
  17. 17.
    Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Autom. Softw. Eng. 12(2), 151–197 (2005)CrossRefGoogle Scholar
  18. 18.
    Tange, O.: GNU parallel - the command-line power tool. login: USENIX Mag. 36(1), 42–47 (2011). Google Scholar
  19. 19.
    Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications. Electr. Notes Theor. Comput. Sci. 113, 145–162 (2005)CrossRefGoogle Scholar
  20. 20.
    Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 736–751. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9_47 CrossRefGoogle Scholar
  21. 21.
    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Nahum, E.M., Xu, D. (eds.) HotCloud 2010. USENIX Association (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Computer Science, Institute of Information SecurityETH ZürichZürichSwitzerland

Personalised recommendations