Advertisement

Almost Event-Rate Independent Monitoring of Metric Temporal Logic

  • David Basin
  • Bhargav Nagaraja Bhatt
  • Dmitriy Traytel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10206)

Abstract

A monitoring algorithm is trace-length independent if its space consumption does not depend on the number of events processed. The analysis of many monitoring algorithms has aimed at establishing trace-length independence. But a trace-length independent monitor’s space consumption can depend on characteristics of the trace other than its size.

We put forward the stronger notion of event-rate independence, where the monitor’s space usage does not depend on the event rate. This property is critical for monitoring voluminous streams of events arriving at a varying rate. Some previously proposed algorithms for past-only temporal logics satisfy this new property. However, when dealing with future operators, the traditional approach of using a queue to wait for future obligations to be resolved is not event-rate independent. We propose a new algorithm that supports metric past and bounded future operators and is almost event-rate independent, where “almost” denotes a logarithmic dependence on the event rate: the algorithm must store the event rate as a number. We compare our algorithm with traditional ones, providing evidence that almost event-rate independence matters in practice.

Keywords

Event Rate Temporal Logic Future Operator Linear Temporal Logic Boolean Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Jasmin Blanchette, Srdjan Krstic, and anonymous TACAS reviewers helped to improve the presentation of this work. Bhatt is supported by the Swiss National Science Foundation grant Big Data Monitoring (167162).

References

  1. 1.
    Aerial: An almost event-rate independent monitor for metric temporal logic (2016). https://bitbucket.org/traytel/aerial
  2. 2.
    Basin, D.A., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric first-order temporal properties. In: FSTTCS 2008, pp. 49–60 (2008)Google Scholar
  3. 3.
    Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal properties. J. ACM 62(2), 15 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29860-8_20 CrossRefGoogle Scholar
  5. 5.
    Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40787-1_4 CrossRefGoogle Scholar
  6. 6.
    Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Log. Comput. 20(3), 651–674 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Du, X., Liu, Y., Tiu, A.: Trace-length independent runtime monitoring of quantitative policies in LTL. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 231–247. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19249-9_15 CrossRefGoogle Scholar
  8. 8.
    Furia, C.A., Spoletini, P.: Bounded variability of metric temporal logic. In: Cesta, A., Combi, C., Laroussinie, F. (eds.) TIME 2014, pp. 155–163. IEEE Computer Society (2014)Google Scholar
  9. 9.
    Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: a case study in the android operating system. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 296–311. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-06410-9_21 CrossRefGoogle Scholar
  10. 10.
    Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002). doi: 10.1007/3-540-46002-0_24 CrossRefGoogle Scholar
  11. 11.
    Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11164-3_15 Google Scholar
  12. 12.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  13. 13.
    Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr. Program. 78(5), 293–303 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer, Heidelberg (2005). doi: 10.1007/11603009_2 CrossRefGoogle Scholar
  15. 15.
    McAfee, A., Brynjolfsson, E.: Big data: the management revolution. Harv. Bus. Rev. 90(10), 61–67 (2012)Google Scholar
  16. 16.
    Nipkow, T.: Boolean expression checkers. Archive of Formal Proofs (2014). http://isa-afp.org/entries/Boolean_Expression_Checkers.shtml
  17. 17.
    Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Autom. Softw. Eng. 12(2), 151–197 (2005)CrossRefGoogle Scholar
  18. 18.
    Tange, O.: GNU parallel - the command-line power tool. login: USENIX Mag. 36(1), 42–47 (2011). http://www.gnu.org/s/parallel Google Scholar
  19. 19.
    Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications. Electr. Notes Theor. Comput. Sci. 113, 145–162 (2005)CrossRefGoogle Scholar
  20. 20.
    Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 736–751. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49674-9_47 CrossRefGoogle Scholar
  21. 21.
    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Nahum, E.M., Xu, D. (eds.) HotCloud 2010. USENIX Association (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Computer Science, Institute of Information SecurityETH ZürichZürichSwitzerland

Personalised recommendations