From LTL and Limit-Deterministic Büchi Automata to Deterministic Parity Automata

  • Javier Esparza
  • Jan KřetínskýEmail author
  • Jean-François Raskin
  • Salomon Sickert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10205)


Controller synthesis for general linear temporal logic (LTL) objectives is a challenging task. The standard approach involves translating the LTL objective into a deterministic parity automaton (DPA) by means of the Safra-Piterman construction. One of the challenges is the size of the DPA, which often grows very fast in practice, and can reach double exponential size in the length of the LTL formula. In this paper we describe a single exponential translation from limit-deterministic Büchi automata (LDBA) to DPA, and show that it can be concatenated with a recent efficient translation from LTL to LDBA to yield a double exponential, “Safraless” LTL-to-DPA construction. We also report on an implementation, a comparison with the SPOT library, and performance on several sets of formulas, including instances from the 2016 SyntComp competition.


Regular Language Linear Temporal Logic Synthesis Problem Acceptance Condition Small Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors want to thank Michael Luttenberger for helpful discussions and the anonymous reviewers for constructive feedback.


  1. Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J., Tsai, M.-H.: Complementing semi-deterministic Büchi automata. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 770–787. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49674-9_49 CrossRefGoogle Scholar
  2. Blahoudek, F., Křetínský, M., Strejček, J.: Comparison of LTL to deterministic rabin automata translators. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 164–172. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45221-5_12 CrossRefGoogle Scholar
  3. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0 — a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-46520-3_8 CrossRefGoogle Scholar
  5. Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: alternative algorithms for LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_6 CrossRefGoogle Scholar
  6. Esparza, J., Křetínský, J., Raskin, J.-F., Sickert, S.: From LTL and limit-deterministic Büchi automata to deterministic parity automata. Technical report, (2017)
  7. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for Büchi word automata, with application to determinization. Inf. Comput. 245, 136–151 (2015)CrossRefzbMATHGoogle Scholar
  8. Jacobs, S., Bloem, R., Brenguier, R., Khalimov, A., Klein, F., Könighofer, R., Kreber, J., Legg, A., Narodytska, N., Perez, G.A., Raskin, J.-F., Ryzhyk, L., Sankur, O., Seidl, M., Tentrup, L., Walker, A.: The 3rd reactive synthesis competition (SYNTCOMP 2016): benchmarks, participants & results. CoRR, abs/1609.00507 (2016)Google Scholar
  9. Kupferman, O., Rosenberg, A.: The blow-up in translating LTL to deterministic automata. In: Meyden, R., Smaus, J.-G. (eds.) MoChArt 2010. LNCS (LNAI), vol. 6572, pp. 85–94. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20674-0_6 CrossRefGoogle Scholar
  10. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. Comput. Log. 2(3), 408–429 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Kini, D., Viswanathan, M.: Limit deterministic and probabilistic automata for LTL\(\backslash \)GU. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 628–642. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_57 Google Scholar
  12. Löding, C.: Optimal bounds for transformations of \({\upomega } \)-automata. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999). doi: 10.1007/3-540-46691-6_8 CrossRefGoogle Scholar
  13. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. Logical Methods Comput. Sci. 3(3:5), 1–21 (2007)Google Scholar
  14. Redziejowski, R.R.: An improved construction of deterministic omega-automaton using derivatives. Fundam. Inform. 119(3–4), 393–406 (2012)MathSciNetzbMATHGoogle Scholar
  15. Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327 (1988)Google Scholar
  16. Sickert, S., Esparza, J., Jaax, S., Křetínský, J.: Limit-deterministic Büchi automata for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 312–332. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-41540-6_17 Google Scholar
  17. Sebastiani, R., Tonetta, S.: “More deterministic” vs. “smaller” Büchi automata for efficient LTL model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39724-3_12 CrossRefGoogle Scholar
  18. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: FOCS, pp. 327–338 (1985)Google Scholar
  19. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: LICS, pp. 332–344 (1986)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Javier Esparza
    • 1
  • Jan Křetínský
    • 1
    Email author
  • Jean-François Raskin
    • 2
  • Salomon Sickert
    • 1
  1. 1.Technische Universität MünchenMunichGermany
  2. 2.Université libre de BruxellesBrusselsBelgium

Personalised recommendations