Advertisement

Encodings of Bounded Synthesis

  • Peter Faymonville
  • Bernd Finkbeiner
  • Markus N. Rabe
  • Leander TentrupEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10205)

Abstract

The reactive synthesis problem is to compute a system satisfying a given specification in temporal logic. Bounded synthesis is the approach to bound the maximum size of the system that we accept as a solution to the reactive synthesis problem. As a result, bounded synthesis is decidable whenever the corresponding verification problem is decidable, and can be applied in settings where classic synthesis fails, such as in the synthesis of distributed systems. In this paper, we study the constraint solving problem behind bounded synthesis. We consider different reductions of the bounded synthesis problem of linear-time temporal logic (LTL) to constraint systems given as boolean formulas (SAT), quantified boolean formulas (QBF), and dependency quantified boolean formulas (DQBF). The reductions represent different trade-offs between conciseness and algorithmic efficiency. In the SAT encoding, both inputs and states of the system are represented explicitly; in QBF, inputs are symbolic and states are explicit; in DQBF, both inputs and states are symbolic. We evaluate the encodings systematically using benchmarks from the reactive synthesis competition (SYNTCOMP) and state-of-the-art solvers. Our key, and perhaps surprising, empirical finding is that QBF clearly dominates both SAT and DQBF.

Keywords

Boolean Function Transition System Constraint System Synthesis Problem Atomic Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28756-5_8 CrossRefGoogle Scholar
  2. 2.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22438-6_10 CrossRefGoogle Scholar
  3. 3.
    Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Interactive presentation: automatic hardware synthesis from specifications: a case study. In: Proceedings of DATE, pp. 1188–1193. EDA Consortium, San Jose, CA, USA (2007)Google Scholar
  4. 4.
    Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54013-4_1 CrossRefGoogle Scholar
  5. 5.
    Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31424-7_45 CrossRefGoogle Scholar
  6. 6.
    Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 24–40. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14295-6_5 CrossRefGoogle Scholar
  7. 7.
    Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Santuari, A., Sebastiani, R.: To ackermann-ize or not to ackermann-ize? on efficiently handling uninterpreted function symbols in \(\mathit{SMT}(\cal{EUF} \cup \cal{T})\). In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 557–571. Springer, Heidelberg (2006). doi: 10.1007/11916277_38 CrossRefGoogle Scholar
  8. 8.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969). http://www.jstor.org/stable/1994916 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19835-9_25 CrossRefGoogle Scholar
  10. 10.
    Finkbeiner, B.: Bounded synthesis for petri games. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 223–237. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23506-6_15 CrossRefGoogle Scholar
  11. 11.
    Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27940-9_15 CrossRefGoogle Scholar
  12. 12.
    Finkbeiner, B., Klein, F.: Bounded cycle synthesis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 118–135. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-41528-4_7 Google Scholar
  13. 13.
    Finkbeiner, B., Schewe, S.: SMT-based synthesis of distributed systems. In: Proceedings of AFM (2007)Google Scholar
  14. 14.
    Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)CrossRefzbMATHGoogle Scholar
  15. 15.
    Finkbeiner, B., Tentrup, L.: Detecting unrealizable specifications of distributed systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 78–92. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54862-8_6 CrossRefGoogle Scholar
  16. 16.
    Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF solving. In: Proceedings of POS@SAT. EPiC Series in Computing, vol. 27, pp. 103–116. EasyChair (2014)Google Scholar
  17. 17.
    Jacobs, S., Bloem, R., Brenguier, R., Khalimov, A., Klein, F., Könighofer, R., Kreber, J., Legg, A., Narodytska, N., Pérez, G.A., Raskin, J., Ryzhyk, L., Sankur, O., Seidl, M., Tentrup, L., Walker, A.: The 3rd reactive synthesis competition (SYNTCOMP 2016): Benchmarks, participants and results. In: Proceedings Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada, 17–18 July, 2016. EPTCS, vol. 229, pp. 149–177 (2016)Google Scholar
  18. 18.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: a tool for property synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 258–262. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73368-3_29 CrossRefGoogle Scholar
  20. 20.
    Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39799-8_66 CrossRefGoogle Scholar
  21. 21.
    Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 108–127. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-35873-9_9 CrossRefGoogle Scholar
  22. 22.
    Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of FOCS, pp. 531–542. IEEE Computer Society (2005)Google Scholar
  23. 23.
    Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 375–392. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-40970-2_23 Google Scholar
  24. 24.
    Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Proceedings of FMCAD, pp. 136–143. IEEE (2015)Google Scholar
  25. 25.
    Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75596-8_33 CrossRefGoogle Scholar
  26. 26.
    Seidl, M., Könighofer, R.: Partial witnesses from preprocessed quantified boolean formulas. In: Proceedings of DATE, pp. 1–6. European Design and Automation Association (2014)Google Scholar
  27. 27.
    Shimakawa, M., Hagihara, S., Yonezaki, N.: Reducing bounded realizability analysis to reachability checking. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 140–152. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24537-9_13 CrossRefGoogle Scholar
  28. 28.
    Tentrup, L.: Solving QBF by abstraction. CoRR abs/1604.06752 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Peter Faymonville
    • 1
  • Bernd Finkbeiner
    • 1
  • Markus N. Rabe
    • 2
  • Leander Tentrup
    • 1
    Email author
  1. 1.Saarland UniversitySaarbrückenGermany
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations