Advertisement

An Abstraction Technique for Parameterized Model Checking of Leader Election Protocols: Application to FTSP

  • Ocan SankurEmail author
  • Jean-Pierre Talpin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10205)

Abstract

We consider distributed timed systems that implement leader election protocols which are at the heart of clock synchronization protocols. We develop abstraction techniques for parameterized model checking of such protocols under arbitrary network topologies, where nodes have independently evolving clocks. We apply our technique for model checking the root election part of the flooding time synchronisation protocol (FTSP), and obtain improved results compared to previous work. We model check the protocol for all topologies in which the distance to the node to be elected leader is bounded by a given parameter.

Keywords

Wireless Sensor Network Model Check Synchronous Communication Future Leader Cache Coherence Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22(6), 307–309 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT press, Cambridge (2008)zbMATHGoogle Scholar
  4. 4.
    Bakhshi, R., Bonnet, F., Fokkink, W., Haverkort, B.: Formal analysis techniques for gossiping protocols. ACM SIGOPS Oper. Syst. Rev. 41(5), 28–36 (2007)CrossRefGoogle Scholar
  5. 5.
    Bingham, J.: Automatic non-interference lemmas for parameterized model checking. In: Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design, FMCAD 2008, Piscataway, NJ, USA, pp. 11:1–11:8. IEEE Press (2008)Google Scholar
  6. 6.
    Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chou, C.-T., Mannava, P.K., Park, S.: A simple method for parameterized verification of cache coherence protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 382–398. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30494-4_27 CrossRefGoogle Scholar
  8. 8.
    Clarke, E., Talupur, M., Veith, H.: Proving ptolemy right: the environment abstraction framework for model checking concurrent systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_4 CrossRefGoogle Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  10. 10.
    Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  11. 11.
    Delzanno, G., Sangnier, A., Traverso, R.: Parameterized verification of broadcast networks of register automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 109–121. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41036-9_11 CrossRefGoogle Scholar
  12. 12.
    Desai, A., Seshia, S.A., Qadeer, S., Broman, D., Eidson, J.C.: Approximate synchrony: an abstraction for distributed almost-synchronous systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 429–448. Springer, Cham (2015). doi: 10.1007/978-3-319-21668-3_25 CrossRefGoogle Scholar
  13. 13.
    Dolev, D., Klawe, M., Rodeh, M.: An o (n log n) unidirectional distributed algorithm for extrema finding in a circle. J. Algorithms 3(3), 245–260 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1995, pp. 85–94. ACM, New York (1995)Google Scholar
  15. 15.
    Garavel, H., Mounier, L.: Specification and verification of various distributed leader election algorithms for unidirectional ring networks. Sci. Comput. Program. 29(1), 171–197 (1997)CrossRefGoogle Scholar
  16. 16.
    John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp. 201–209 (2013)Google Scholar
  17. 17.
    Fredlund, L., Groote, J.F., Korver, V.: Formal verification of a leader election protocol in process algebra. Theoret. Comput. Sci. 177(2), 459–486 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Krstic, S.: Parameterized system verification with guard strengthening and parameter abstraction. In: Automated Verification of Infinite State Systems (2005)Google Scholar
  19. 19.
    Kusy, B., Abdelwahed, S.: FTSP protocol verification using SPIN, May 2006Google Scholar
  20. 20.
    Maróti, M., Kusy, B., Simon, G., Lédeczi, A.: The flooding time synchronization protocol. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, SenSys 2004, pp. 39–49. ACM, New York (2004)Google Scholar
  21. 21.
    McInnes, A.I.: Model-checking the flooding time synchronization protocol. In: IEEE International Conference on Control and Automation, ICCA 2009, pp. 422–429, December 2009Google Scholar
  22. 22.
    McMillan, K.L.: Parameterized verification of the FLASH cache coherence protocol by compositional model checking. In: Margaria, T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 179–195. Springer, Heidelberg (2001). doi: 10.1007/3-540-44798-9_17
  23. 23.
    Milner, R.: A Calculus of Communicating Systems. Springer, New York (1982)zbMATHGoogle Scholar
  24. 24.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57, October 1977Google Scholar
  25. 25.
    Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1, \(\infty \))- counter abstraction. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002). doi: 10.1007/3-540-45657-0_9 CrossRefGoogle Scholar
  26. 26.
    Sugihara, R., Gupta, R.K.: Clock synchronization with deterministic accuracy guarantee. In: Marrón, P.J., Whitehouse, K. (eds.) EWSN 2011. LNCS, vol. 6567, pp. 130–146. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19186-2_9 CrossRefGoogle Scholar
  27. 27.
    Talupur, M., Tuttle, M.R.: Going with the flow: parameterized verification using message flows. In: Formal Methods in Computer-Aided Design, FMCAD 2008, pp. 1–8, November 2008Google Scholar
  28. 28.
    Tan, L., Bu, L., Zhao, J., Wang, L.: Analyzing the robustness of FTSP with timed automata. In: Proceedings of the Second Asia-Pacific Symposium on Internetware, Internetware 2010, pp. 21:1–21:4. ACM, New York (2010)Google Scholar
  29. 29.
    Vasudevan, S., Kurose, J., Towsley, D.: Design and analysis of a leader election algorithm for mobile ad hoc networks. In: Proceedings of the 12th IEEE International Conference on Network Protocols, ICNP 2004, pp. 350–360. IEEE (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.CNRS, IrisaRennesFrance
  2. 2.InriaRennesFrance

Personalised recommendations