Advertisement

A Novel Learning Algorithm for Büchi Automata Based on Family of DFAs and Classification Trees

  • Yong Li
  • Yu-Fang Chen
  • Lijun ZhangEmail author
  • Depeng Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10205)

Abstract

In this paper, we propose a novel algorithm to learn a Büchi automaton from a teacher who knows an \(\omega \)-regular language. The algorithm is based on learning a formalism named family of DFAs (FDFAs) recently proposed by Angluin and Fisman [10]. The main catch is that we use a classification tree structure instead of the standard observation table structure. The worst case storage space required by our algorithm is quadratically better than the table-based algorithm proposed in [10]. We implement the first publicly available library ROLL (Regular Omega Language Learning), which consists of all \(\omega \)-regular learning algorithms available in the literature and the new algorithms proposed in this paper. Experimental results show that our tree-based algorithms have the best performance among others regarding the number of solved learning tasks.

Notes

Acknowledgement

This work has been supported by the National Basic Research (973) Program of China under Grant No. 2014CB340701, the CAS Fellowship for Visiting Scientists from Taiwan under Grant No. 2015TW2GA0001, the National Natural Science Foundation of China (Grants 61532019, 61472473), the CAS/SAFEA International Partnership Program for Creative Research Teams, the Sino-German CDZ project CAP (GZ 1023), and the MOST project No. 103-2221-E-001-019-MY3.

References

  1. 1.
    Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.: Generating models of infinite-state communication protocols using regular inference with abstraction. Formal Methods Syst. Des. 46(1), 1–41 (2015)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abdulla, P.A., Chen, Y.-F., Clemente, L., Holík, L., Hong, C.-D., Mayr, R., Vojnar, T.: Simulation subsumption in Ramsey-based Büchi automata universality and inclusion testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 132–147. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14295-6_14 CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Chen, Y.-F., Clemente, L., Holík, L., Hong, C.-D., Mayr, R., Vojnar, T.: Advanced Ramsey-based Büchi automata inclusion testing. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23217-6_13 CrossRefGoogle Scholar
  4. 4.
    Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126 (1987)CrossRefzbMATHGoogle Scholar
  5. 5.
    Alur, R., Černỳ, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java classes. In: POPL, pp. 98–109 (2005)Google Scholar
  6. 6.
    Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562. Springer, Heidelberg (2005). doi: 10.1007/11513988_52 CrossRefGoogle Scholar
  7. 7.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)MathSciNetGoogle Scholar
  9. 9.
    Angluin, D., Boker, U., Fisman, D.: Families of DFAs as acceptors of omega-regular languages. In: MFCS, pp. 11:1–11:14 (2016)Google Scholar
  10. 10.
    Angluin, D., Fisman, D.: Learning regular omega languages. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT 2014. LNCS (LNAI), vol. 8776, pp. 125–139. Springer, Cham (2014). doi: 10.1007/978-3-319-11662-4_10 Google Scholar
  11. 11.
    Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA. In: IJCAI, pp. 1004–1009 (2009)Google Scholar
  12. 12.
    Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf: the automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14295-6_32 CrossRefGoogle Scholar
  13. 13.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: 1960 International Congress on Logic, Methodology and Philosophy of Science, vol. 44, pp. 1–11 (2016)Google Scholar
  14. 14.
    Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational \(\omega \)-languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994). doi: 10.1007/3-540-58027-1_27 CrossRefGoogle Scholar
  15. 15.
    Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated assume-guarantee reasoning for simulation conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 534–547. Springer, Heidelberg (2005). doi: 10.1007/11513988_51 CrossRefGoogle Scholar
  16. 16.
    Chapman, M., Chockler, H., Kesseli, P., Kroening, D., Strichman, O., Tautschnig, M.: Learning the language of error. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 114–130. Springer, Cham (2015). doi: 10.1007/978-3-319-24953-7_9 CrossRefGoogle Scholar
  17. 17.
    Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00768-2_3 CrossRefGoogle Scholar
  18. 18.
    Chen, Y.-F., Hsieh, C., Lengál, O., Lii, T.-J., Tsai, M.-H., Wang, B.-Y., Wang, F.: PAC learning-based verification and model synthesis. In: ICSE, pp. 714–724 (2016)Google Scholar
  19. 19.
    Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003). doi: 10.1007/3-540-36577-X_24 CrossRefGoogle Scholar
  20. 20.
    Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending automated compositional verification to the full class of omega-regular languages. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_2 CrossRefGoogle Scholar
  21. 21.
    Feng, L., Kwiatkowska, M., Parker, D.: Automated learning of probabilistic assumptions for compositional reasoning. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 2–17. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19811-3_2 CrossRefGoogle Scholar
  22. 22.
    Giannakopoulou, D., Rakamarić, Z., Raman, V.: Symbolic learning of component interfaces. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 248–264. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33125-1_18 CrossRefGoogle Scholar
  23. 23.
    Grumberg, O., Meller, Y.: Learning-based compositional model checking of behavioral UML systems. Dependable Softw. Syst. Eng. 45, 117 (2016)Google Scholar
  24. 24.
    Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002). doi: 10.1007/3-540-45923-5_6 CrossRefGoogle Scholar
  25. 25.
    He, F., Gao, X., Wang, B., Zhang, L.: Leveraging weighted automata in compositional reasoning about concurrent probabilistic systems. In: POPL, pp. 503–514 (2015)Google Scholar
  26. 26.
    Howar, F., Giannakopoulou, D., Rakamarić, Z.: Hybrid learning: interface generation through static, dynamic, and symbolic analysis. In: ISSTA, pp. 268–279 (2013)Google Scholar
  27. 27.
    Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27940-9_17 CrossRefGoogle Scholar
  28. 28.
    Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages to program structures. Mach. Learn. 96(1–2), 65–98 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). doi: 10.1007/978-3-319-21690-4_32 CrossRefGoogle Scholar
  30. 30.
    Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)Google Scholar
  31. 31.
    Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL, pp. 81–92 (2001)Google Scholar
  32. 32.
    Li, Y., Chen, Y., Zhang, L., Liu, D.: A novel learning algorithm for Büchi automata based on family of DFAs and classification trees. CoRR, abs/1610.07380 (2016)Google Scholar
  33. 33.
    Lin, S.-W., André, E., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for compositional verification of timed systems. IEEE Trans. Softw. Eng. 40(2), 137–153 (2014)CrossRefGoogle Scholar
  34. 34.
    Maler, O., Staiger, L.: On syntactic congruences for \(\omega \)-languages. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS 1993. LNCS, vol. 665, pp. 586–594. Springer, Heidelberg (1993). doi: 10.1007/3-540-56503-5_58 CrossRefGoogle Scholar
  35. 35.
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Automata Lang. Comb. 7(2), 225–246 (2002)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. In: STOC, pp. 411–420 (1989)Google Scholar
  37. 37.
    Sun, J., Xiao, H., Liu, Y., Lin, S.-W., Qin, S.: TLV: abstraction through testing, learning, and validation. In: FSE, pp. 698–709 (2015)Google Scholar
  38. 38.
    Tsay, Y.-K., Tsai, M.-H., Chang, J.-S., Chang, Y.-W.: Büchi store: an open repository of Büchi automata. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 262–266. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19835-9_23 CrossRefGoogle Scholar
  39. 39.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS, pp. 322–331 (1986)Google Scholar
  40. 40.
    Wang, F., Wu, J.-H., Huang, C.-H., Chang, K.-H.: Evolving a test oracle in black-box testing. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 310–325. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19811-3_22 CrossRefGoogle Scholar
  41. 41.
    Xiao, H., Sun, J., Liu, Y., Lin, S.-W., Sun, C.: Tzuyu: learning stateful typestates. In: ASE, pp. 432–442 (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yong Li
    • 1
    • 2
  • Yu-Fang Chen
    • 3
  • Lijun Zhang
    • 1
    • 2
    Email author
  • Depeng Liu
    • 1
    • 2
  1. 1.State Key Laboratory of Computer ScienceInstitute of Software, CASBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Institute of Information ScienceAcademia SinicaTaipeiTaiwan

Personalised recommendations