Advertisement

Abstract

Symbolic automata allow transitions to carry predicates over rich alphabet theories, such as linear arithmetic, and therefore extend classic automata to operate over infinite alphabets, such as the set of rational numbers. In this paper, we study the foundational problem of learning symbolic automata. We first present \(\mathrm {\Lambda }^*\), a symbolic automata extension of Angluin’s L\(^*\) algorithm for learning regular languages. Then, we define notions of learnability that are parametric in the alphabet theories of the symbolic automata and show how these notions nicely compose. Specifically, we show that if two alphabet theories are learnable, then the theory accepting the Cartesian product or disjoint union of their alphabets is also learnable. Using these properties, we show how existing algorithms for learning automata over large alphabets nicely fall in our framework. Finally, we implement our algorithm in an open-source library and evaluate it on existing automata learning benchmarks.

Keywords

Partitioning Function Boolean Algebra Disjoint Union Regular Language Outgoing Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Alexandra Silva, Joshua Moerman, and Nimit Singhania for their feedback on an early version of this paper.

References

  1. 1.
    LearnLib, a framework for automata learning. http://learnlib.de/
  2. 2.
    Alur, R., Černý, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java classes. SIGPLAN Not. 40(1), 98–109 (2005)CrossRefGoogle Scholar
  3. 3.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Angluin, D., Eisenstat, S., Fisman, D.: Learning regular languages via alternating automata. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 3308–3314. AAAI Press (2015)Google Scholar
  5. 5.
    Argyros, G., Stais, I., Kiayias, A., Keromytis, A.D.: Back in black: towards formal, black box analysis of sanitizers and filters. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, 22–26 May 2016, pp. 91–109 (2016)Google Scholar
  6. 6.
    Botincan, M., Babic, D.: Sigma*: symbolic learning of input-output specifications. In: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy, 23–25 January 2013, pp. 443–456 (2013)Google Scholar
  7. 7.
    Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite state machines. Formal Aspects Comput. 28(2), 233–263 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    D’Antoni, L., Veanes, M.: Minimization of symbolic automata. SIGPLAN Not. 49(1), 541–553 (2014)zbMATHGoogle Scholar
  9. 9.
    García, P., de Parga, M.V., Álvarez, G.I., Ruiz, J.: Learning regular languages using nondeterministic finite automata. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 92–101. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70844-5_10 CrossRefGoogle Scholar
  10. 10.
    Isberner, M., Howar, F., Steffen, B.: Inferring automata with state-local alphabet abstractions. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 124–138. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38088-4_9 CrossRefGoogle Scholar
  11. 11.
    Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11164-3_26 Google Scholar
  12. 12.
    Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2(4), 285–318 (1988)Google Scholar
  13. 13.
    Mens, I., Maler, O.: Learning regular languages over large ordered alphabets. Logical Methods Comput. Sci. 11(3) (2015)Google Scholar
  14. 14.
    Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nominal automata. In: Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL) (2017)Google Scholar
  15. 15.
    Yuan, Y., Alur, R., Loo, B.T.: NetEgg: programming network policies by examples. In: Proceedings of the 13th ACM Workshop on Hot Topics in Networks, HotNets-XIII, pp. 20:1–20:7. ACM, New York (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of Wisconsin–MadisonMadisonUSA

Personalised recommendations