Individual Tree Structure and Growth in Mixed Compared with Monospecific Stands

  • Hans PretzschEmail author


This chapter focuses on the shape, growth, and productivity of individual trees growing in inter- versus intraspecific environments. The individual tree senses and responds to the prevailing environmental conditions. The properties of the individuals determine the forest stand dynamics as individuals of different species interact with each other. Therefore, the level of the individual tree is most suitable for understanding competition, competition reduction through complementarity, and facilitation, which can result in the differences between structure dynamics and productivity of mixed compared with monospecific stands. The chapter shows how species mixing can modify the size development, persistence, and productivity of individual trees in mixed stands compared with members of the same species in neighbouring monospecific stands. Many of the beneficial tree mixing reactions result from complementary crown and root shape, spatially or temporally complementary resource exploitation, redistribution of resources, or modification of growth allocation and allometry introduced in this chapter.


Stand Density Mixed Stand European Beech Crown Area Monospecific Stand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alemdag IS (1978) Evaluation of some competition indexes for the prediction of diameter increment in planted white spruce. Can For Serv, Ottawa, CanadaGoogle Scholar
  2. Arz MAO (2013) Strukturelle Kronenanalyse von Fichte (Picea abies [L.] Karst.) und Buche (Fagus sylvativa L.) im Rein- und Mischbestand. Kombination von terrestrischen Laserscan- und ZuwachsdatenGoogle Scholar
  3. Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford, New YorkGoogle Scholar
  4. Assmann E, Franz F (1965) Vorläufige Fichten-Ertragstafel für Bayern. Forstwissenschaftliches Centralblatt 84, 1/2, Sonderdruck, Verlag Paul Parey, Hamburg/BerlinGoogle Scholar
  5. Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253CrossRefGoogle Scholar
  6. Bauhus J (2009) Rooting patterns of old-growth forests: is aboveground structural and functional diversity mirrored belowground? In: Cea W (ed) Old-growth forests, ecological studies, vol 207. Springer, Berlin, pp 211–229. doi: 10.1007/978-3-540-92706-8_10 CrossRefGoogle Scholar
  7. Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J For Res 29(2):260–273Google Scholar
  8. Bayer D, Seifert S, Pretzsch H (2013) Structural crown properties of Norway spruce and European beech in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27(4):1035–1047CrossRefGoogle Scholar
  9. Belsky AJ, Canham CD (1994) Forest gaps and isolated savanna trees. Bioscience 44(2):77–84CrossRefGoogle Scholar
  10. Binkley D, Stape JL, Ryan MG (2004) Thinking about efficiency of resource use in forests. For Ecol Manag 193:5–16CrossRefGoogle Scholar
  11. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96(1):18–34Google Scholar
  12. Brown GS (1965) Point density in stems per acre, vol 38. New Zealand Forest Research Note, Wellington, New ZealandGoogle Scholar
  13. Caldwell MM, Richards JH (1989) Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79(1):1–5PubMedCrossRefGoogle Scholar
  14. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–1965CrossRefGoogle Scholar
  15. Canham CD, Finzi AC, Pacala SW, Burbank DH (1994) Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can J For Res 24(2):337–349CrossRefGoogle Scholar
  16. Canham CD, LePage PT, Coates KD (2004) A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can J For Res 34(4):778–787CrossRefGoogle Scholar
  17. Christmann (1939) Ertragstafel für den Kiefern-Fichten-Mischbestand. In: Wiedemann E (ed) Ertragstafeln wichtiger Holzarten bei verschiedener Durchforstung sowie einiger Mischbestandsformen. Schaper Verlag, Hannover, p 100Google Scholar
  18. Comeau PG, Kimmins JP (1989) Above- and below-ground biomass and production of Lodgepole pine on sites with differing soil moisture regimes. Can J For Res 19:447–454CrossRefGoogle Scholar
  19. Connell JH (1990) Apparent versus “real” competition in plants. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 9–26Google Scholar
  20. Dieler J, Pretzsch H (2013) Morphological plasticity of European beech (Fagus sylvatica L.) in pure and mixed-species stands. For Ecol Manag 295:97–108CrossRefGoogle Scholar
  21. Dirnberger GF, Sterba H (2014) A comparison of different methods to estimate species proportions by area in mixed stands. For Syst 23(3):534–546Google Scholar
  22. Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165CrossRefGoogle Scholar
  23. Enquist BJ, West GB, Brown JH (2009) Extension and evaluations of a general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci U S A 106(17):7046–7051PubMedPubMedCentralCrossRefGoogle Scholar
  24. Faber PJ (1981) Die Standflächenschätzung über den Distanzfaktor. In: Proc Dt Verb Forstl Forschungsanst. Sek Ertragskd, Soest, pp 87–95Google Scholar
  25. Faber PJ (1983) Concurrentie en groei van de bomen binnen een opstand (Konkurrenz und Wachstum der Bäume in einem Waldbestand). Pijksinstituut voor onderzoek in de bos- en landschapsbouw “De Dorschkamp”, vol 18(1). Uitvoerig verslag, WageningenGoogle Scholar
  26. Forrester DI (2013) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag. doi: 10.1016/j.foreco.2013.10.003 Google Scholar
  27. Forrester DI (2014) A stand-level light interception model for horizontally and vertically heterogeneous canopies. Ecol Model 276:14–22CrossRefGoogle Scholar
  28. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230CrossRefGoogle Scholar
  29. Forrester DI, Bauhus J, Cowie AL, Mitchell PA, Brockwell J (2007) Productivity of three young mixed-species plantations containing N2-fixing Acacia and non-N2-fixing Eucalyptus and Pinus trees in Southeastern Australia. For Sci 53(3):426–434Google Scholar
  30. Fraser AR (1977) Triangle based probability polygons for forest sampling. For Sci 23(1):111–121Google Scholar
  31. Gaiser RN (1952) Root channels and roots in forest soils. Soil Sci Soc Am J 16(1):62CrossRefGoogle Scholar
  32. Goisser M, Geppert U, Rötzer T, Paya A, Huber A, Kerner R, Bauerle T, Pretzsch H, Pritsch K, Häberle K-H, Matyssek R, Grams TEE (2016) Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies? For Ecol Manag 375:268–278CrossRefGoogle Scholar
  33. Griess VC, Knoke T (2011) Growth performance, windthrow, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res 41:1141–1158CrossRefGoogle Scholar
  34. Gspaltl M, Sterba H, O’Hara KL (2012) The relationship between available area efficiency and area exploitation index in an even-aged coast redwood (Sequoia sempervirens) stand. Forestry 85(5):567–577CrossRefGoogle Scholar
  35. Hari P (1985) Theoretical aspects of eco-physiological research. In: Tigerstedt PMA, Puttonen P, Koski V (eds) Crop physiology of forest trees. Helsinki University Press, Helsinki, pp 21–30. (336 p)Google Scholar
  36. Heinsdorf D (1999) Das Revier Sauen – Ein Beispiel für erfolgreichen Waldumbau, Schriftenreihe des Ministeriums für Ernährung, Landwirtschaft und Forsten. vol Band VI. Ministerium für Ernährung, Landwirtschaft und Forsten, Brandenburg, Landesforstanstalt EberswaldeGoogle Scholar
  37. Helms JA (1998) The dictionary of forestry. The Society of American Foresters, Bethesda, MDGoogle Scholar
  38. Jack WH (1968) Single trees sampling in evenaged plantations for survey and experimentation. In: 14th IUFRO Congress, München, pp 379–403Google Scholar
  39. Kelty MJ (1992) Comparative productivity of monocultures and mixed stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic, Dordrecht, pp 125–141CrossRefGoogle Scholar
  40. Keyes MR, Grier CC (1981) Above-and below-ground net production in 40-years-old Douglas-fir stands on low and high productivity sites. Can J For Res 11:599–605CrossRefGoogle Scholar
  41. Kimmins JP (1993) Scientific foundations for the simulation of ecosystem function and management in FORCYTE-11. Forestry Canada, Northern Forestry Centre, Edmonton, AlbertaGoogle Scholar
  42. Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27(4):511–541PubMedGoogle Scholar
  43. Knoke T, Hahn A (2007) Baumartenvielfalt und Produktionsrisiken: Ein Forschungseinblick und-ausblick – Diversity of tree species and risk: A research insight and outlook. Schweizerische Zeitschrift fur Forstwesen 158(10):312–322CrossRefGoogle Scholar
  44. Kuoch R (1972) Zur Struktur und Behandlung von subalpinen Fichtenwäldern. Schweiz Z Forstwes 123:77–89Google Scholar
  45. Larocque GR, Luckai N, Adhikary SN, Groot A, Bell FW, Sharma M (2013) Competition theory-science and application in mixed forest stands: review of experimental and medelling methods and suggestions for future research. Environ Rev 21:71–84CrossRefGoogle Scholar
  46. Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E-D, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs G-J, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, HYH C, Lei X, Schelhaas M-J, Lu H, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354(6309). doi: 10.1126/science.aaf8957
  47. Matyssek R, Lüttge U (2012) Gaia. The planet holobiont. Nova Acta Leopoldina NF 114(391):325–344Google Scholar
  48. Mayer H, Ott E (1991) Gebirgswaldbau Schutzwaldpflege. Gustav Fischer Verlag, Stuttgart, New YorkGoogle Scholar
  49. McCarthy MC, Enquist BJ (2007) Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol 21:713–720CrossRefGoogle Scholar
  50. Møller AP, Swaddle JP (1997) Asymmetry, developmental stability, and evolution. Oxford Serie in ecology and evolution. Oxford University Press, OxfordGoogle Scholar
  51. Nagel J (1985) Wachstumsmodell für Bergahorn in Schleswig-Holstein. Universität Göttingen, 124pGoogle Scholar
  52. Nelder JA (1962) New kinds of systematic designs for spacing experiments. Biometrics 18(3):283–307CrossRefGoogle Scholar
  53. Niklas KJ (1994) Plant allometry. Univ Chicago Press, Chicago, ILGoogle Scholar
  54. Niklas KJ (2004) Plant allometry: is there a grand unifying theory? Biol Rev 79:871–889PubMedCrossRefGoogle Scholar
  55. Nikolova PS, Zang C, Pretzsch H (2011) Combining tree-ring analyses on stems and coarse roots to study the growth dynamics of forest trees: a case study on Norway spruce (Picea abies [L.] H. Karst). Trees 5:859–872CrossRefGoogle Scholar
  56. Oldemann RAA (1990) Forests: elements of silvology. Springer, BerlinCrossRefGoogle Scholar
  57. Oliver CD, Larson BC (1996) Forest stand dynamics: Update edition. Wiley, New YorkGoogle Scholar
  58. Pelz DR (1978) Estimating individual tree growth with tree polygons. Blacksburg, VAGoogle Scholar
  59. Pretzsch H (2005a) Diversity and productivity in forests. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function, Ecological studies 176. Springer, Berlin, pp 41–64CrossRefGoogle Scholar
  60. Pretzsch H (2005b) Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.). Evidence from long-term experimental plots. Eur J For Res 124(3):193–205CrossRefGoogle Scholar
  61. Pretzsch H (2006) Von der Standfächeneffizienz der Bäume zur Dichte-Zuwachs-Beziehung des Bestandes. Beitrag zur Integration von Baum- und Bestandesebene. Allgemeine Forst- und Jagdzeitung 177:188–199Google Scholar
  62. Pretzsch H (2009) Forest dynamics, growth and yield. Springer, BerlinCrossRefGoogle Scholar
  63. Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–264CrossRefGoogle Scholar
  64. Pretzsch H, Biber P (2005) A re-evaluation of Reinekes rule and stand density index. For Sci 51(4):304–320Google Scholar
  65. Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J For Res 40:370–384CrossRefGoogle Scholar
  66. Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169(3):637–649. doi: 10.1007/s00442-011-2240-5 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pretzsch H, Schütze G (2005) Crown allometry and growing space efficiency of Norway Spruce (Picea abies [L.] Karst) and European Beech (Fagus sylvatica [L.]) in pure and mixed stands. Plant Biol 7(6):628–640PubMedCrossRefGoogle Scholar
  68. Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204CrossRefGoogle Scholar
  69. Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67:712CrossRefGoogle Scholar
  70. Pretzsch H, Biber P, Uhl E (2012a) Coarse root-shoot allometry of Pinus radiata modified by site conditions in the Western Cape province of South Africa. Southern Forests 74(4):237–246CrossRefGoogle Scholar
  71. Pretzsch H, Schütze G, Uhl E (2012b) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483–495PubMedCrossRefGoogle Scholar
  72. Pretzsch H, Heym M, Pinna S, Schneider R (2014) Effect of variable retention cutting on the relationship between growth of coarse roots and stem of black spruce (Picea mariana (Mill.) Britton). Scand J For Res 29(3):222–233Google Scholar
  73. Pretzsch H, Forrester DI, Rötzer T (2015) Representation of species mixing in forest growth models. A review and perspective. Ecol Model 313:276–292CrossRefGoogle Scholar
  74. Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193(4):830–841PubMedCrossRefGoogle Scholar
  75. Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands—a review. For Ecol Manag 175(1):253–273CrossRefGoogle Scholar
  76. Purves DW, Lichstein JW, Pacala SW (2007) Crown plasticity and competition for canopy space: a new spatially implicit model parameterized for 250 North American tree species. PLoS One 2(e870). doi: 10.1371/journal.pone.0000870
  77. Reineke LH (1933) Perfecting a stand-density index for even-aged forest. J Agric Res 46:627–638Google Scholar
  78. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30(9):1192–1208PubMedCrossRefGoogle Scholar
  79. Roloff A (2001) Baumkronen. Verständnis und praktische Bedeutung eines komplexen Naturphänomens. Ulmer, StuttgartGoogle Scholar
  80. Rothe A (1997) Einfluß des Baumartenanteils auf Durchwurzelung, Wasserhaushalt, Stoffhaushalt und Zuwachsleistung eines Fichten-Buchen-Mischbestandes am Standort Höglwald. Forstl Forschungsber München 163:174Google Scholar
  81. Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870CrossRefGoogle Scholar
  82. Rubner M (1931) Die Gesetze des Energieverbrauchs bei der Ernährung, vol 16/18. Proc preuß Akad Wiss Physik-Math Kl, Berlin, WienGoogle Scholar
  83. Ryan MG, Waring RH (1992) Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology 73(6):2100–2108CrossRefGoogle Scholar
  84. Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47(4):235–242CrossRefGoogle Scholar
  85. Saha S, Kuehne C, Kohnle U, Brang P, Ehring A, Geisel J, Leder B, Muth M, Petersen R, Peter J, Ruhm W, Bauhus J (2012) Growth and quality of young oaks (Quercus robur and Quercus petraea) grown in cluster plantings in central Europe: a weighted meta-analysis. For Ecol Manag 283:106–118CrossRefGoogle Scholar
  86. Schober R (1950/51) Zum jahreszeitlichen Ablauf des sekundären Dickenwachstums. Allgemeine Forst- und Jagdzeitung 122:81–96Google Scholar
  87. Schütz JP (1989) Zum Problem der Konkurrenz in Mischbeständen. Schweiz Z Forstwes 140(12):1069–1083Google Scholar
  88. Smith TM, Smith RL (2009) Elements of ecology. Pearson International Edition, 7th edn. Benjamin Cummings, San FranciscoGoogle Scholar
  89. Sterba H, Amateis RL (1998) Crown efficiency in a loblolly pine (Pinus taeda) spacing experiment. Can J For Res 28(9):1344–1351CrossRefGoogle Scholar
  90. Sterba H, Andrae F, Pambudhi F (1993) Crown efficiency of oak standards as affected by mistletoe and coppice removal. For Ecol Manag 62(1):39–49CrossRefGoogle Scholar
  91. Stone EL, Kalisz PJ (1991) On the maximum extent of tree roots. For Ecol Manag 46(1–2):59–102CrossRefGoogle Scholar
  92. Strobel GW (1995) Rottenstruktur und Konkurrenz im subalpinen FichtenwaldGoogle Scholar
  93. Thurm EA, Biber P, Pretzsch H (2016) Tree growth is partitioned in favor of the stem on the expense of the roots for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and European beech (Fagus sylvatica L.) if growing in mixture and under humid conditions. Trees. doi: 10.1007/s00468-016-1512-4
  94. Uhl E, Biber P, Ulbricht M, Heym M, Horváth T, Lakatos F, Gál J, Steinacker L, Tonon G, Ventura M, Pretzsch H (2015) Analysing the effect of stand density and site conditions on structure and growth of oak species using Nelder trials along an environmental gradient: experimental design, evaluation methods, and results. For Ecosyst 2(1):17CrossRefGoogle Scholar
  95. Vandermeer J (1992) The ecology of intercropping. Cambridge University Press, CambridgeGoogle Scholar
  96. Verein Deutscher Forstlicher Versuchsanstalten (1873) Anleitung für Durchforstungsversuche. In: von Ganghofer A (ed) Das Forstliche Versuchswesen, vol 2. Schmid’sche Buchhandlung, Augsburg, pp 247–253Google Scholar
  97. Verein Deutscher Forstlicher Versuchsanstalten (1902) Beratungen der vom Vereine Deutscher Forstlicher Versuchsanstalten eingesetzten Kommission zur Feststellung des neuen Arbeitsplanes für Durchforstungs- und Lichtungsversuche. Allgemeine Forst- und Jagdzeitung 78:180–184Google Scholar
  98. von Bertalanffy L (1951) Theoretische Biologie: II. Band, Stoffwechsel, Wachstum, 2nd edn. A Francke AG, BernGoogle Scholar
  99. von Lüpke B, Spellmann H (1997) Aspekte der Stabilität und des Wachstums von Mischbeständen aus Fichte und Buche als Grundlage für waldbauliche Entscheidungen. Forstarchiv 68:167–179Google Scholar
  100. von Lüpke B, Spellmann H (1999) Aspects of stability, growth and natural regeneration in mixed Norway spruce-beech stands as a basis of silvicultural decisions. In: Olsthoorn AFM, Bartelink HH, Gardiner JJ, Pretzsch H, Hekhuis HJ, Franc A (eds) Management of mixed-species forest: silviculture and economics, vol 15. IBN Scientific Contributions, pp 245–267Google Scholar
  101. West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci U S A 106(17):7040–7045PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wiedemann E (1942) Der gleichaltrige Fichten-Buchen-Mischbestand. Mitt Forstwirtsch u Forstwiss 13:1–88Google Scholar
  103. Wiedemann E (1951) Ertragskundliche und waldbauliche Grundlagen der Forstwirtschaft. Frankfurt am MainGoogle Scholar
  104. Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994) Evidence of reduced photosynthetic rates in old trees. For Sci 40(3):513–527Google Scholar
  105. Zeide B (1985) Tolerance and self-tolerance of trees. For Ecol Manag 13:149–166CrossRefGoogle Scholar
  106. Zeide B (1998) Fractal analysis of foliage distribution in loblolly pine crowns. Can J For Res 28:106–114CrossRefGoogle Scholar
  107. Zeller L (2016) Tree ring width and wood density in mixed versus pure stands of Scots pine and European beech. TUM, 39 pGoogle Scholar
  108. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Chair for Forest Growth and Yield Science, Faculty of Forest Science and Resource ManagementTechnical University of MunichFreisingGermany

Personalised recommendations