Stand Dynamics of Mixed-Species Stands Compared with Monocultures

  • Hans PretzschEmail author
  • David I. Forrester


Based on well-established principles and using reference values for monocultures, this chapter examines how mixed-species stands differ from monocultures in terms of stand growth and yield, self-thinning, alien thinning, stand density, and density-growth relationships. This chapter also considers how the species interactions and the resulting mixing effects on growth can vary spatially and temporarily in response to the prevailing environmental conditions.

Beyond the basic principles of mixed stand behaviour, this chapter will provide mean and sum values for mixed versus monospecific stand growth and yield for temperate Central European ecosystems. Both the growth principles and dendrometrical measures for mixed compared with monospecific stands are required for systematically designing, and managing, more resource-use-efficient mixed-species production systems. The overyielding of mixed versus monospecific stands revealed in this chapter is clearly of a magnitude that is worthwhile exploring further and tracing from the stand to the tree and organ levels.


Stand Density Mixed Stand European Beech Standing Volume Tree Species Richness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amorosos MM, Turnblom EC (2006) Comparing productivity of pure and mixed Douglas-fir and western hemlock plantations in the Pacific Northwest. Can J For Res 36:1484–1496CrossRefGoogle Scholar
  2. Assmann E (1961) Waldertragskunde. BLV Verlagsgesellschaft, München, Bonn, WienGoogle Scholar
  3. Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford, New YorkGoogle Scholar
  4. Assmann E, Franz F (1963) Vorläufige Fichten-Ertragstafel für Bayern. Institut für Ertragskunde der Forstl Forschungsanstalt München: 103Google Scholar
  5. Avery TE, Burkhardt HE (1975) Forest measurements, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  6. Beets PN, Madgwick HAI (1988) Aboveground dry matter and nutrient content of Pinus radiata as affected by lupin, fertilizer, thinning, and stand age. N Z J For Sci 18:43–64Google Scholar
  7. Bielak K, Dudzinska M, Pretzsch H (2014) Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst) can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments. For Syst 23(3):573–589Google Scholar
  8. Binkley D (2003) Seven decades of stand development in mixed and pure stands of conifers and nitrogen-fixing red alder. Can J For Res 33:2274–2279CrossRefGoogle Scholar
  9. Binkley D, Senock R, Bird S, Cole TG (2003) Twenty years of stand development in pure and mixed stands of Eucalyptus saligna and N-fixing Falcataria moluccana. Can J For Res 33:2274–2279CrossRefGoogle Scholar
  10. Bonnemann A (1939) Der gleichaltrige Misehbestand von Kiefer und Buche. Mitt aus Forstwirtschaft und Forstwissenschaft 10:439–483Google Scholar
  11. Burger H (1941) Beitrag zur Frage der reinen oder gemischten Bestände. Mitt Schweiz Anst Forstl Versuchsw XXII:164–203Google Scholar
  12. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–1965CrossRefGoogle Scholar
  13. Condés S, Del Rio M, Sterba H (2013) Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. For Ecol Manag 292:86–95CrossRefGoogle Scholar
  14. de Martonne E (1926) Une novelle fonction climatologique: L’indice d’aridité. La Météorologie 21:449–458Google Scholar
  15. del Río M, Schütze G, Pretzsch H (2014) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16(1):166–176CrossRefPubMedGoogle Scholar
  16. Dirnberger GF, Sterba H (2014) A comparison of different methods to estimate species proportions by area in mixed stands. For Syst 23(3):534–546Google Scholar
  17. Dirnberger G, Sterba H, Condés S, Ammer C, Annighöfer P, Avdagic A, Bielak K, Brazaitis G, Coll L, Heym M, Hurt V, Kurylyak V, Motta R, Pach M, Ponette Q, Ruiz Peinado R, Skrzyszewski J, Šrámek V, Streel G, Svoboda M, Zlatanov T, Pretzsch H (2016) Species proportions by area in mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) For Ecol Manag 373:149–166CrossRefGoogle Scholar
  18. Dittmar O, Knapp E, Zehler H (1986) Die langfristige Versuchsfläche Tornau im StFB Dübener Heide, ein Beispiel für den Weg vom Kiefernreinbestand zum Buchennaturverjüngungsbetrieb. Soz Forstw 36:344–348Google Scholar
  19. Eichhorn F (1902) Ertragstafeln für die Weißtanne. Verlag Julius Springer, BerlinCrossRefGoogle Scholar
  20. Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For Ecol Manag 312:282–292CrossRefGoogle Scholar
  21. Forrester DI, Bauhus J (2016) A review of processes behind diversity – productivity relationships in forests. Curr For Rep 2:45–61CrossRefGoogle Scholar
  22. Forrester DI, Pretzsch H (2015) Tamm review: on the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For Ecol Manag 356:41–53CrossRefGoogle Scholar
  23. Forrester DI, Smith RGB (2012) Faster growth of Eucalyptus grandis and Eucalyptus pilularis in mixed-species stands than monocultures. For Ecol Manag 286:81–86CrossRefGoogle Scholar
  24. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230CrossRefGoogle Scholar
  25. Forrester DI, Bauhus J, Khanna PK (2004) Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. For Ecol Manage 193:81–95CrossRefGoogle Scholar
  26. Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE (2010) Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. For Ecol Manage 259:1761–1770CrossRefGoogle Scholar
  27. Frivold LH, Frank J (2002) Growth of mixed birch-coniferous stands in relation to pure coniferous stands at similar sites in South-eastern Norway. Scand J For Res 17:139–149CrossRefGoogle Scholar
  28. Frivold LH, Kolström T (1999) Yield and treatment of mixed stands of boreal tree species in Fennoscandia. In: Olsthoorn AFM, Bartelink HH, Gardiner JJ, Pretzsch H, Hekhuis HJ, Franc A (eds) Management of mixed-species forest: silviculture and economics, vol 15. IBN Scientific Contributions, pp 37–45Google Scholar
  29. Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gehrhardt E (1923) Ertragstafeln für Eiche, Buche, Tanne, Fichte und Kiefer. Verlag Julius Springer, BerlinGoogle Scholar
  31. Gül AU, Misir M, Misir N, Yavuz H (2005) Calculation of uneven-aged stand structures with the negative exponential diameter distribution and Sterba’s modified competition density rule. For Ecol Manag 214(1):212–220CrossRefGoogle Scholar
  32. Harper JL (1977) Population biology of plants. Academic Press, London, New YorkGoogle Scholar
  33. Hausser K (1956) Tannen-Ertragstafel. In: Schober R (ed) Ertragstafeln wichtiger Baumarten. JD Sauerländer’s Verlag, Frankfurt am Main, p 154Google Scholar
  34. Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190CrossRefPubMedGoogle Scholar
  35. Hector A, Schmid B, Beierkuhnlein C, Caldeira CM, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadly PW, Loreau M, Minns A, Mulder CP, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European Grasslands. Science 286:1123–1127CrossRefPubMedGoogle Scholar
  36. Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology 78:1966–1975CrossRefGoogle Scholar
  37. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35. doi: 10.1890/04-0922 CrossRefGoogle Scholar
  38. Jensen AM (1983) Growth of Silver Fir (Abies alba Mill.) compared with the growth of Norway Spruce (Picea abies (L) Karst.) in pure and mixed stands on sandy soils in the Western parts of Denmark. In: Reports from department of Forestry, vol 14. Royal Veterinary and Agricultural University, pp 1–498Google Scholar
  39. Jolliffe PA (2000) The replacement series. J Ecol 88(3):371–385CrossRefGoogle Scholar
  40. Jolliffe PA, Minjas AN, Runecles VC (1984) A reinterpretation of yield relationships in replacement series experiments. J Appl Ecol 21:227–243CrossRefGoogle Scholar
  41. Jüttner O (1955) Ertragstafeln für Eichen. In: Etragstafeln wichtiger Baumarten bei verschiedener Durchforstung, neubearbeiet von R. Schober, vol 2. Auflage 1975. JD Saulerländer’s Verlag, Frankfurt, p 154Google Scholar
  42. Keller W (1995) Zur Oberhöhenberechnung in Mischbeständen aus standortkundlicher Sicht. In: Proc Dt Verb Forstl Forschungsanst, Joachimsthal, pp 52–60Google Scholar
  43. Kelty MJ (1992) Comparative productivity of monocultures and mixed stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic Publishers, Dordrecht, pp 125–141CrossRefGoogle Scholar
  44. Kennel R (1965) Untersuchungen über die Leistung von Fichte und Buche im Rein- und Mischbestand. Allgemeine Forst- und Jagdzeitung 136:149–161, 173–189Google Scholar
  45. Kern G (1966) Wachstum und Umweltfaktoren im Schlag- und Plenterwald. Bayerischer Landwirtschaftsverlag, München Basel WienGoogle Scholar
  46. Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: a forest economics contribution on an ecological concept. For Ecol Manag 213(1–3):102–116. doi: 10.1016/j.foreco.2005.03.043 CrossRefGoogle Scholar
  47. Körner C (2002) Ökologie. In: Sitte P, Weiler EW, Kadereit JW, Bresinsky A, Körner C (eds) Strasburger Lehrbuch für Botanik, 35th edn. Spektrum Akademischer Verlag, Heidelberg, Berlin, pp 886–1043Google Scholar
  48. Laclau J-P, Bouillet J-P, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira MR, Saint-André L, Maquère V, Nouvellon Y, Ranger J (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil 1. Growth dynamics and aboveground net primary production. For Ecol Manag 225:3905–3917CrossRefGoogle Scholar
  49. Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E-D, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs G-J, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, HYH C, Lei X, Schelhaas M-J, Lu H, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354(6309). doi: 10.1126/science.aaf8957
  50. Long JN, Dean TJ, Roberts SD (2004) Linkages between silviculture and ecology: examination of several important conceptual models. For Ecol Manag 200:249–261CrossRefGoogle Scholar
  51. Magin R (1959) Struktur und Leistung mehrschichtiger Mischwälder in den bayerischen Alpen. Mitt Staatsforstverwaltung Bayerns 30:161Google Scholar
  52. Mielikäinen K (1980) Mänty-koivusekametsiköiden rakenne ja kehitys. Summary: structure and development of mixed pine and birch stands. Commun Inst For Fenn 99:1–82Google Scholar
  53. Mielikäinen K (1985) Koivusekoituksen Vaikutus Kuusikon Rakenteeseeen ja kehitykseen – Effect of an admixture of birch on the structure and development of Norway Spruce Stands. Commun Inst For Fenn 133:1–79Google Scholar
  54. Mitscherlich G (1970) Wald, Wachstum und Umwelt, vol 1. Band. Form und Wachstum von Baum und Bestand. JD Sauerländer’s Verlag, Frankfurt am MainGoogle Scholar
  55. Montero G, Cañellas I, Ortega C, del Río M (2001) Results from a thinning experiment in a Scots pine (Pinus sylvestris L.) natural regeneration stand in the Sistema Ibérico Mountain Range (Spain). For Ecol Manag 145(1):151–161CrossRefGoogle Scholar
  56. Nagel J, Spellmann H, Pretzsch H (2012) Zum Informationspotenzial langfristiger forstlicher Versuchsflächen und periodischer Waldinventuren für die waldwachstumskundliche Forschung. Allgemeine Forst- und Jagdzeitung 183. Jg. (5/6):111–116Google Scholar
  57. Olsthoorn AFM, Bartelink HH, Gardiner JJ, Pretzsch H, Hekhuis HJ, Franc A (1999) Management of mixed-species forest: silviculture and economics. IBN Scientific Contributions 15:389Google Scholar
  58. Piotto D (2007) A meta-analysis comparing tree growth in monocultures and mixed plantations. For Ecol Manag 255:781–786CrossRefGoogle Scholar
  59. Pretzsch H (2003) The elasticity of growth in pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and common beech (Fagus sylvatica L.) J For Sci 49(11):491–501Google Scholar
  60. Pretzsch H (2005a) Diversity and productivity in forests. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function, Ecol Studies 176. Springer, Berlin, pp 41–64Google Scholar
  61. Pretzsch H (2005b) Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.). Evidence from long-term experimental plots. Eur J For Res 124(3):193–205CrossRefGoogle Scholar
  62. Pretzsch H (2006) Species-specific allometric scaling under self-thinning: evidence from long-term plots in forest stands. Oecologia 146(4):572–583CrossRefPubMedGoogle Scholar
  63. Pretzsch H (2009) Forest dynamics, growth and yield. Springer, BerlinCrossRefGoogle Scholar
  64. Pretzsch H (2016) Ertragstafel-Korrekturfaktoren für Umwelt- und Mischungseffekte. AFZ Der Wald 14:47–50Google Scholar
  65. Pretzsch H, Biber P (2005) A re-evaluation of reinekes rule and stand density index. For Sci 51(4):304–320Google Scholar
  66. Pretzsch H, Biber P (2016) Tree species mixing can increase maximum stand density. Can J For Res. 46, 1179–1193. doi: 10.1139/cjfr-2015-0413
  67. Pretzsch H, Rais A (2016) Wood quality in complex forests versus even-aged monocultures: review and perspectives. Wood Sci Technol 50:845–880CrossRefGoogle Scholar
  68. Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204CrossRefGoogle Scholar
  69. Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67:712CrossRefGoogle Scholar
  70. Pretzsch H, Matthew C, Dieler J (2012) Allometry of tree crown structure. relevance for space occupation at the individual plant level and for self-thinning at the stand level. In: Growth and defence in plants. Springer, Berlin, Heidelberg, pp 287–310Google Scholar
  71. Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart H-P, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013a) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132(2):263–280CrossRefGoogle Scholar
  72. Pretzsch H, Bielak K, Bruchwald A, Dieler J, Dudzińska M, Ehrhart H-P, Jensen AM, Johannsen VK, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013b) Species mixing and productivity of forests. Results from long-term experiments. German title: Mischung und Produktivität von Waldbeständen. Ergebnisse langfristiger ertragskundlicher Versuche. Allgemeine Forst- und Jagdzeitung 184:177–196Google Scholar
  73. Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134(5):927–947. doi: 10.1007/s10342-015-0900-4 CrossRefGoogle Scholar
  74. Pretzsch H, Bauerle T, Häberle KH, Matyssek R, Schütze G, Rötzer T (2016a) Tree diameter growth after root trenching in a mature mixed stand of Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]). Trees 30:1–13. doi: 10.1007/s00468-016-1406-5 CrossRefGoogle Scholar
  75. Pretzsch H, Schütze G, Biber P (2016b) Zum Einfluss der Baumartenmischung auf die Ertragskomponenten von Waldbeständen. Allgemeine Forst- und Jagdzeitung 187(7/8):122–135Google Scholar
  76. Preuhsler T (1979) Ertragskundliche Merkmale oberbayerischer Bergmischwald-Verjüngungsbestände auf kalkalpinen Standorten im Forstamt Kreuth. Forstl Forschungsber München 45:372 pGoogle Scholar
  77. Reineke LH (1933) Perfecting a stand-density index for even-aged forest. J Agric Res 46:627–638Google Scholar
  78. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30(9):1192–1208CrossRefPubMedGoogle Scholar
  79. Scherer-Lorenzen M, Körner C, Schulze E-D (2005) Forest diversity and function, Ecol Studies, vol 176. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  80. Schober R (1972) Die Rotbuche. SchrReihe forstl Fak Univ Göttingen u Mitt Nieders VersAnst Bd. 43/44:333 pGoogle Scholar
  81. Schober R (1975) Ertragstafeln wichtiger Baumarten. Saulerländers Verlag, Frankfurt a. MGoogle Scholar
  82. Schwaiger S (2013) Wachstum von Fichte und Schwarz-Erle im Rein- und Mischbestand.Google Scholar
  83. Skovsgaard JP, Vanclay JK (2008) Forest productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81(1). doi: 10.1093/forestry/cpm041
  84. Sterba H (1987) Estimating potential density from thinning experiments and inventory data. For Sci 33(4):1022–1034Google Scholar
  85. Sterba H, Monserud RA (1993) The maximum density concept applied to uneven-aged mixed-species stands. For Sci 39(3):432–452Google Scholar
  86. Thurm EA, Pretzsch H (2016) Improved productivity and modified tree morphology of mixed versus pure stands of European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) with increasing precipitation and age. Ann For Sci 73:1–15. doi: 10.1007/s13595-016-0588-8 CrossRefGoogle Scholar
  87. Toïgo M, Vallet P, Perot T, Bontemps JD, Piedallu C, Courbaud B (2015) Overyielding in mixed forests decreases with site productivity. J Ecol 103(2):502–512CrossRefGoogle Scholar
  88. Vallet P, Perot T (2011) Silver fir stand productivity is enhanced when mixed with Norway spruce: evidence based on large-scale inventory data and a generic modelling approach. J Veg Sci 22(5):932–942CrossRefGoogle Scholar
  89. Vallet P, Perot T (2016) Tree diversity effect on dominant height in temperate forest. For Ecol Manag 38:106–114CrossRefGoogle Scholar
  90. Vandermeer JH (1989) The ecology of intercropping. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  91. Vandermeer J (1992) The ecology of intercropping. Cambridge University PressGoogle Scholar
  92. Vilà M, Carrillo-Gavilán A, Vayreda J, Bugmann H, Fridman J, Grodzki W, Haase J, Kunstler G, Schelhaas M, Trasobares A (2013) Disentangling biodiversity and climatic determinants of wood production. PLoS One 8(e53530)Google Scholar
  93. von Gadow K (1986) Observations on self-thinning in pine plantations. S Afr J Sci 82(7):364–368Google Scholar
  94. von Lüpke B, Spellmann H (1999) Aspects of stability, growth and natural regeneration in mixed Norway spruce-beech stands as a basis of silvicultural decisions. In: Olsthoorn AFM, Bartelink HH, Gardiner JJ, Pretzsch H, Hekhuis HJ, Franc A (eds) Management of mixed-species forest: silviculture and economics, vol 15. IBN Scientific Contributions, pp 245–267Google Scholar
  95. Vospernik S, Nothdurft A (2016) Intra-annueller Zuwachs von Fichte, Buche und Zirbe. Jahrestagung der Sektion Ertragskunde im DVFFA 9. Lyss, SchweizGoogle Scholar
  96. Weiner J, Freckleton RP (2010) Constant final yield. Annu Rev Ecol Evol Syst 41:173–192CrossRefGoogle Scholar
  97. Wellhausen K, Heym M, Pretzsch H (2016) Mischbestände aus Kiefer und Buche. Ökologie, Ertrag und waldbauliche Behandlung. Allgemeine Forst- und Jagdzeitung 187Google Scholar
  98. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126CrossRefPubMedGoogle Scholar
  99. West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667CrossRefGoogle Scholar
  100. West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. PNAS 106(17):7040–7045Google Scholar
  101. Wiedemann E (1942) Der gleichaltrige Fichten-Buchen-Mischbestand. Mitt Forstwirtsch u Forstwiss 13:1–88Google Scholar
  102. Wiedemann E (1943) Der Vergleich der Massenleistung des Mischbestandes mit dem Reinbestand. Allgemeine Forst- und Jagdzeitung 119:123–132Google Scholar
  103. Wiedemann E (1951) Ertragskundliche und waldbauliche Grundlagen der Forstwirtschaft. Frankfurt am MainGoogle Scholar
  104. Wimmenauer K (1941) Zur Frage der Mischbestände. Allgemeine Forst- und Jagdzeitung 90:90–93Google Scholar
  105. Yoda KT, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. J Inst Polytech, Osaka Univ D 14:107–129Google Scholar
  106. Zeide B (1985) Tolerance and self-tolerance of trees. For Ecol Manag 13:149–166CrossRefGoogle Scholar
  107. Zeide B (1987) Analysis of the 3/2 power law of self-thinning. For Sci 33:517–537Google Scholar
  108. Zeide B (2001) Thinning and growth: a full turnaround. J For 99:20–25Google Scholar
  109. Zeide B (2004) How to measure density. Trees 19:1–14CrossRefGoogle Scholar
  110. Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with eveness, species richness and trait variation: a global metaanalysis. J Ecol. doi: 10.1111/j.1365-2745.2011.01944.x Google Scholar
  111. Zöhrer F (1969) Bestandeszuwachs und Leistungsvergleich montan, subalpiner Lärchen-Fichten-Mischbestände. Forstwissenschaftliches Centralblatt 88:1–64CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Chair for Forest Growth and Yield Science, Faculty of Forest Science and Resource ManagementTechnical University of MunichFreisingGermany
  2. 2.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations