Advertisement

Allgemeinanästhesie

  • Georg LauxEmail author
  • Steffen Rex
Chapter
Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Jede Allgemeinanästhesie besteht aus den Komponenten Hypnose, Analgesie und – bei Bedarf – Muskelrelaxation. Ziel ist es, den Patienten vor den Reizen des operativen Eingriffs abzuschirmen, sodass unbewusstes wie bewusstes Erleben der Situation vermieden, Schmerzen ausgeschaltet, Abwehr, Bewegungen und vegetative Reaktionen verhindert oder gedämpft werden. Selbstverständlich gehören zur Allgemeinanästhesie auch die Planung der operativen Abläufe, Sicherung der Atemwege, Beatmung, Homöostase des Elektrolyt-, Wasser-, Säure-Basen-Haushalts, des Kreislaufs sowie die Erhaltung und zeitgerechte Ausleitung der Narkose.

Supplementary material

Video 1

Die Narkoseeinleitung (WMV 11010 kb)

Literatur

  1. 1.
    Haynes AB, Weiser TG, Berry WR et al (2009) A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med 360:491–499CrossRefGoogle Scholar
  2. 2.
    Harter RL, Kelly WB, Kramer MG, Perez CE, Dzwonczyk RR (1998) A comparison of the volume and pH of gastric contents of obese and lean surgical patients. Anesth Analg 86:147–152PubMedGoogle Scholar
  3. 3.
    Eichhorn JH (1989) Prevention of intraoperative anesthesia accidents and related severe injury through safety monitoring. Anesthesiology 70:572–577CrossRefGoogle Scholar
  4. 4.
    Pedersen T, Moller AM, Pedersen BD (2003) Pulse oximetry for perioperative monitoring: systematic review of randomized, controlled trials. Anesth Analg 96:426–431, tableCrossRefGoogle Scholar
  5. 5.
    Myles PS, Leslie K, McNeil J, Forbes A, Chan MT (2004) Bispectral index monitoringto prevent awareness during general anesthesia: the B-Aware randomised controlled trial. Lancet 363(9423):1757–1763CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Kissing I (2000) Depth of anesthesia and BIS index monitoring. Anaesth Analg 90(5):1114–1117CrossRefGoogle Scholar
  8. 8.
    Berry CB, Myles PS (1994) Preoxygenation in healthy volunteers: a graph of oxygen „washin“ using end-tidal oxygraphy. Br J Anaesth 72:116–118CrossRefGoogle Scholar
  9. 9.
    Baraka AS, Taha SK, Aouad MT, El-Khatib MF, Kawkabani NI (1999) Preoxygenation: comparison of maximal breathing and tidal volume breathing techniques. Anesthesiology 91:612–616CrossRefGoogle Scholar
  10. 10.
    Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G (2003) Optimal oxygen concentration during induction of general anesthesia. Anesthesiology 98:28–33CrossRefGoogle Scholar
  11. 11.
    Rusca M, Proietti S, Schnyder P et al (2003) Prevention of atelectasis formation during induction of general anesthesia. Anesth Analg 97:1835–1839CrossRefGoogle Scholar
  12. 12.
    Dixon BJ, Dixon JB, Carden JR et al (2005) Preoxygenation is more effective in the 25 degrees head-up position than in the supine position in severely obese patients: a randomized controlled study. Anesthesiology 102:1110–1115CrossRefGoogle Scholar
  13. 13.
    Hildreth AN, Mejia VA, Maxwell RA et al (2008) Adrenal suppression following a single dose of etomidate for rapid sequence induction: a prospective randomized study. J Trauma 65:573–579CrossRefGoogle Scholar
  14. 14.
    Jabre P, Combes X, Lapostolle F et al (2009) Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: a multicentre randomised controlled trial. Lancet 374:293–300CrossRefGoogle Scholar
  15. 15.
    Leslie K, Myles PS, Chan MT et al (2011) Nitrous oxide and long-term morbidity and mortality in the ENIGMA trial. Anesth Analg 112:387–393CrossRefGoogle Scholar
  16. 16.
    Schonherr ME, Hollmann MW, Graf B (2004) Nitrous oxide. Sense or nonsense for today‘s anaesthesia. Anaesthesist 53:796–812CrossRefGoogle Scholar
  17. 17.
    Smith I, Nathanson M, White PF (1996) Sevoflurane – a long-awaited volatile anaesthetic. Br J Anaesth 76:435–445CrossRefGoogle Scholar
  18. 18.
    Conzen PF, Kharasch ED, Czerner SF et al (2002) Low-flow sevoflurane compared with low-flow isoflurane anesthesia in patients with stable renal insufficiency. Anesthesiology 97:578–584CrossRefGoogle Scholar
  19. 19.
    Baum VC, Yemen TA, Baum LD (1997) Immediate 8 % sevoflurane induction in children: a comparison with incremental sevoflurane and incremental halothane. Anesth Analg 85:313–316PubMedGoogle Scholar
  20. 20.
    Kohrs R, Durieux ME (1998) Ketamine: teaching an old drug new tricks. Anesth Analg 87:1186–1193PubMedGoogle Scholar
  21. 21.
    Adams HA, Werner C (1997) From the racemate to the eutomer: (S)-ketamine. Renaissance of a substance? Anaesthesist 46:1026–1042CrossRefGoogle Scholar
  22. 22.
    Jantzen JP, Diehl P (1991) Rectal administration of drugs. Fundamentals and applications in anesthesia. Anaesthesist 40:251–261PubMedGoogle Scholar
  23. 23.
    Luginbuhl M, Petersen-Felix S, Zbinden AM, Schnider TW (2005) Xenon does not reduce opioid requirement for orthopedic surgery. Can J Anaesth 52:38–44CrossRefGoogle Scholar
  24. 24.
    Petersen-Felix S, Luginbuhl M, Schnider TW et al (1998) Comparison of the analgesic potency of xenon and nitrous oxide in humans evaluated by experimental pain. Br J Anaesth 81:742–747CrossRefGoogle Scholar
  25. 25.
    Smith I, White PF, Nathanson M, Gouldson R (1994) Propofol. An update on its clinical use. Anesthesiology 81:1005–1043CrossRefGoogle Scholar
  26. 26.
    Nordstrom O, Engstrom AM, Persson S, Sandin R (1997) Incidence of awareness in total i.v. anaesthesia based on propofol, alfentanil and neuromuscular blockade. Acta Anaesthesiol Scand 41:978–984CrossRefGoogle Scholar
  27. 27.
    Sandin RH, Enlund G, Samuelsson P, Lennmarken C (2000) Awareness during anaesthesia: a prospective case study. Lancet 355:707–711CrossRefGoogle Scholar
  28. 28.
    Avidan MS, Zhang L, Burnside BA et al (2008) Anesthesia awareness and the bispectral index. N Engl J Med 358:1097–1108CrossRefGoogle Scholar
  29. 29.
    Myles PS, Leslie K, McNeil J, Forbes A, Chan MT (2004) Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet 363:1757–1763CrossRefGoogle Scholar
  30. 30.
    Wilhelm W, Wrobel M, Kreuer S, Larsen R (2003) Remifentanil. An update. Anaesthesist 52:473–494CrossRefGoogle Scholar
  31. 31.
    Zollner C, Schafer M (2007) Remifentanil-based intraoperative anaesthesia and postoperative pain therapy. Is there an optimal treatment strategy? Anaesthesist 56:1038–1046CrossRefGoogle Scholar
  32. 32.
    Guignard B, Bossard AE, Coste C et al (2000) Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology 93:409–417CrossRefGoogle Scholar
  33. 33.
    Hood DD, Curry R, Eisenach JC (2003) Intravenous remifentanil produces withdrawal hyperalgesia in volunteers with capsaicin-induced hyperalgesia. Anesth Analg 97:810–815CrossRefGoogle Scholar
  34. 34.
    Absalom AR, Mani V, De ST, Struys MM (2009) Pharmacokinetic models for propofol – defining and illuminating the devil in the detail. Br J Anaesth 103:26–37CrossRefGoogle Scholar
  35. 35.
    Brull SJ, Murphy GS (2010) Residual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness. Anesth Analg 111:129–140CrossRefGoogle Scholar
  36. 36.
    Murphy GS, Brull SJ (2010) Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg 111:120–128CrossRefGoogle Scholar
  37. 37.
    Khuenl-Brady KS, Wattwil M, Vanacker BF et al (2010) Sugammadex provides faster reversal of vecuronium-induced neuromuscular blockade compared with neostigmine: a multicenter, randomized, controlled trial. Anesth Analg 110:64–73CrossRefGoogle Scholar
  38. 38.
    Lee C, Jahr JS, Candiotti KA et al (2009) Reversal of profound neuromuscular block by sugammadex administered three minutes after rocuronium: a comparison with spontaneous recovery from succinylcholine. Anesthesiology 110:1020–1025CrossRefGoogle Scholar
  39. 39.
    Puhringer FK, Rex C, Sielenkamper AW et al (2008) Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology 109:188–197CrossRefGoogle Scholar
  40. 40.
    Lee C (2009) Goodbye suxamethonium! Anaesthesia 64(Suppl 1):73–81CrossRefGoogle Scholar
  41. 41.
    Sessler DI (2001) Complications and treatment of mild hypothermia. Anesthesiology 95:531–543CrossRefGoogle Scholar
  42. 42.
    Kranke P, Eberhart LH, Roewer N, Tramer MR (2004) Single-dose parenteral pharmacological interventions for the prevention of postoperative shivering: a quantitative systematic review of randomized controlled trials. Anesth Analg 99:718–727, tableCrossRefGoogle Scholar
  43. 43.
    Weiss G, Jacob M (2008) Preoperative fasting 2008: medical behaviour between empiricism and science. Anaesthesist 57:857–872CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Kantonsspital Baselland Departement für AnästhesieLiestalSchweiz
  2. 2.Katholieke Universiteit Leuven, Department of Anesthesiology, University Hospitals Leuven, Campus Gasthuisberg & Department of Cardiovascular SciencesLeuvenBelgien

Section editors and affiliations

  • Rolf Rossaint
    • 1
  1. 1.Klinik für operative Intensivmedizin und Intermediate CareUniversitätsklinikum AachenAachenDeutschland

Personalised recommendations