Automated Constructivization of Proofs

  • Frédéric Gilbert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10203)


No computable function can output a constructive proof from a classical one whenever its associated theorem also holds constructively. We show in this paper that it is however possible, in practice, to turn a large amount of classical proofs into constructive ones. We describe for this purpose a linear-time constructivization algorithm which is provably complete on large fragments of predicate logic.


  1. 1.
    Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Bulletins de la classe des sciences 15(5), 183–188 (1929)zbMATHGoogle Scholar
  2. 2.
    Friedman, H.: Classically and intuitionistically provably recursive functions. In: Müller, G.H., Scott, D.S. (eds.) Higher Set Theory. LNM, vol. 669, pp. 21–27. Springer, Heidelberg (1978). doi: 10.1007/BFb0103100 CrossRefGoogle Scholar
  3. 3.
    Kuroda, S., et al.: Intuitionistische untersuchungen der formalistischen logik. Nagoya Math. J. 2, 35–47 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boudard, M., Hermant, O.: Polarizing double-negation translations. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 182–197. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45221-5_14 CrossRefGoogle Scholar
  5. 5.
    Maehara, S., et al.: Eine darstellung der intuitionistischen logik in der klassischen. Nagoya Math. J. 7, 45–64 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gentzen, G.: Über das verhältnis zwischen intuitionistischer und klassischer arithmetik. Arch. Math. Logic 16(3), 119–132 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gödel, K.: Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse eines mathematischen Kolloquiums 4(1933), 34–38 (1933)zbMATHGoogle Scholar
  8. 8.
    Kolmogorov, A.N.: On the principle of excluded middle. Mat. Sb 32(646–667), 24 (1925)Google Scholar
  9. 9.
    Boespflug, M., Carbonneaux, Q., Hermant, O.: The \(\lambda \varPi \)-calculus modulo as a universal proof language. In: Pichardie, D., Weber, T. (eds.) PxTP (2012)Google Scholar
  10. 10.
    Bonichon, R., Delahaye, D., Doligez, D.: Zenon: an extensible automated theorem prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75560-9_13 CrossRefGoogle Scholar
  11. 11.
    Dragalin, A.G., Mendelson, E.: Mathematical intuitionism. Introduction to proof theory (1990)Google Scholar
  12. 12.
    Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving in classical and intuitionistic logic (system descriptions). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-71070-7_23 CrossRefGoogle Scholar
  13. 13.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.École des Ponts ParisTech, Inria, CEA LISTMarne-la-ValléeFrance

Personalised recommendations