On Higher-Order Probabilistic Subrecursion

  • Flavien Breuvart
  • Ugo Dal LagoEmail author
  • Agathe Herrou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10203)


We study the expressive power of subrecursive probabilistic higher-order calculi. More specifically, we show that endowing a very expressive deterministic calculus like Gödel’s \(\mathbb {T}\) with various forms of probabilistic choice operators may result in calculi which are not equivalent as for the class of distributions they give rise to, although they all guarantee almost-sure termination. Along the way, we introduce a probabilistic variation of the classic reducibility technique, and we prove that the simplest form of probabilistic choice leaves the expressive power of \(\mathbb {T}\) essentially unaltered. The paper ends with some observations about functional expressivity: expectedly, all the considered calculi represent precisely the functions which \(\mathbb {T}\) itself represents.


  1. 1.
    Barendregt, H.P.: The Lambda Calculus, Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1981)zbMATHGoogle Scholar
  2. 2.
    Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-32033-3_24 CrossRefGoogle Scholar
  3. 3.
    Breuvart, F., Dal Lago, U., Herrou, A.: On probabilistic subrecursion (long version) (2016).
  4. 4.
    Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-value \(\lambda \)-calculi. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 209–228. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54833-8_12 CrossRefGoogle Scholar
  5. 5.
    Dal Lago, U., Toldin, P.P.: A higher-order characterization of probabilistic polynomial time. Inf. Comput. 241, 114–141 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda calculus. RAIRO - Theor. Inf. Appl. 46(3), 413–450 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dal Lago, U., Zuppiroli, S., Gabbrielli, M.: Probabilistic recursion theory and implicit computational complexity. Sci. Ann. Comp. Sci. 24(2), 177–216 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    De Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by probabilistic machines. Automata Stud. 34, 183–198 (1956)MathSciNetGoogle Scholar
  9. 9.
    Ehrhard, T., Pagani, M., Tasson, C.: Probabilistic coherence spaces are fully abstract for probabilistic PCF. In: Sewell, P. (ed.) Proceedings of POPL. ACM (2014)Google Scholar
  10. 10.
    Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic termination: soundness, completeness, and compositionality. In: Proceedings of POPL, pp. 489–501 (2015)Google Scholar
  11. 11.
    Gill, J.: Computational complexity of probabilistic turing machines. SIAM J. Comput. 6(4), 675–695 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  13. 13.
    Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: UAI, pp. 220–229 (2008)Google Scholar
  14. 14.
    Jung, A., Tix, R.: The troublesome probabilistic powerdomain. Electr. Notes Theor. Comput. Sci. 13, 70–91 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kaminski, B.L., Katoen, J.-P.: On the hardness of almost–sure termination. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 307–318. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48057-1_24 CrossRefGoogle Scholar
  16. 16.
    Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–350 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing, vol. 999. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  18. 18.
    McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Monographs in Computer Science. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  19. 19.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)zbMATHGoogle Scholar
  20. 20.
    Prince, S.J.D.: Computer Vision: Models, Learning, and Inference. Cambridge University Press, New York (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Saheb-Djahromi, N.: Probabilistic LCF. In: Winkowski, J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 442–451. Springer, Heidelberg (1978). doi: 10.1007/3-540-08921-7_92 CrossRefGoogle Scholar
  22. 22.
    Santos, E.S.: Probabilistic turing machines and computability. Proc. Am. Math. Soc. 22(3), 704–710 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Elsevier Science Inc., New York (2006)zbMATHGoogle Scholar
  24. 24.
    Statman, R.: The typed lambda-calculus is not elementary recursive. Theor. Comput. Sci. 9, 73–81 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Staton, S., Yang, H., Heunen, C., Kammar, O., Wood, F.: Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. In: Proceedings of LICS, pp. 525–534 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Flavien Breuvart
    • 1
  • Ugo Dal Lago
    • 1
    • 2
    Email author
  • Agathe Herrou
    • 3
  1. 1.INRIASophia AntipolisFrance
  2. 2.University of BolognaBolognaItaly
  3. 3.ENS de LyonLyonFrance

Personalised recommendations