Advertisement

On the Relationship Between Bisimulation and Trace Equivalence in an Approximate Probabilistic Context

  • Gaoang BianEmail author
  • Alessandro AbateEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10203)

Abstract

This work introduces a notion of approximate probabilistic trace equivalence for labelled Markov chains, and relates this new concept to the known notion of approximate probabilistic bisimulation. In particular this work shows that the latter notion induces a tight upper bound on the approximation between finite-horizon traces, as expressed by a total variation distance. As such, this work extends corresponding results for exact notions and analogous results for non-probabilistic models. This bound can be employed to relate the closeness in satisfaction probabilities over bounded linear-time properties, and allows for probabilistic model checking of concrete models via abstractions. The contribution focuses on both finite-state and uncountable-state labelled Markov chains, and claims two main applications: firstly, it allows an upper bound on the trace distance to be decided for finite state systems; secondly, it can be used to synthesise discrete approximations to continuous-state models with arbitrary precision.

Notes

Acknowledgments

The authors would like to thank Marta Kwiatkowska for discussions on an earlier version of this draft.

References

  1. 1.
    Abate, A.: Approximation metrics based on probabilistic bisimulations for general state-space Markov processes: a survey. Electron. Notes Theor. Comput. Sci. 297, 3–25 (2013)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abate, A., Katoen, J.P., Lygeros, J., Prandini, M.: Approximate model checking of stochastic hybrid systems. Eur. J. Control 16(6), 624–641 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Abate, A., Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking of labelled Markov processes via finite approximate bisimulations. In: Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash Panangaden. LNCS, vol. 8464, pp. 40–58. Springer, Cham (2014). doi: 10.1007/978-3-319-06880-0_2 CrossRefGoogle Scholar
  4. 4.
    Bian, G., Abate, A.: On the relationship between bisimulation and trace equivalence in an approximate probabilistic context (extended version) (2017). http://arxiv.org/abs/1701.04547
  5. 5.
    Bollobás, B., Varopoulos, N.: Representation of systems of measurable sets. Math. Proc. Cambridge Philos. Soc. 78(02), 323–325 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–75 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Castro, P.S., Panangaden, P., Precup, D.: Notions of state equivalence under partial observability. In: IJCAI (2009)Google Scholar
  8. 8.
    Chen, D., Breugel, F., Worrell, J.: On the complexity of computing probabilistic bisimilarity. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 437–451. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28729-9_29 CrossRefGoogle Scholar
  9. 9.
    Chen, T., Kiefer, S.: On the total variation distance of labelled Markov chains. In: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), p. 33. ACM (2014)Google Scholar
  10. 10.
    Comanici, G., Panangaden, P., Precup, D.: On-the-fly algorithms for bisimulation metrics. In: 2012 Ninth International Conference on Quantitative Evaluation of Systems (QEST), pp. 94–103. IEEE (2012)Google Scholar
  11. 11.
    Daca, P., Henzinger, T.A., Kretínský, J., Petrov, T.: Linear distances between markov chains. In: 27th International Conference on Concurrency Theory, CONCUR 2016, Québec City, Canada, 23–26 August 2016, pp. 20:1–20:15 (2016)Google Scholar
  12. 12.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. Inf. Comput. 179(2), 163–193 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic processes: logic, simulation and games. In: Fifth International Conference on Quantitative Evaluation of Systems, QEST 2008, pp. 264–273. IEEE (2008)Google Scholar
  14. 14.
    D’Innocenzo, A., Abate, A., Katoen, J.P.: Robust PCTL model checking. In: Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, pp. 275–286. ACM (2012)Google Scholar
  15. 15.
    Durrett, R.: Probability: Theory and Examples, 3rd edn. Duxbury Press, Pacific Grove (2004)zbMATHGoogle Scholar
  16. 16.
    Esmaeil Zadeh Soudjani, S., Abate, A.: Adaptive and sequential gridding procedures for the abstraction and verification of stochastic processes. SIAM J. Appl. Dyn. Syst. 12(2), 921–956 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gebler, D., Tini, S.: Compositionality of approximate bisimulation for probabilistic systems. In: EXPRESS/SOS 2013, pp. 32–46 (2013)Google Scholar
  18. 18.
    Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70(3), 419–435 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
  20. 20.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: Conference Record of the 16th ACM Symposium on Principles of Programming Languages, POPL 1989, pp. 344–352 (1989)Google Scholar
  21. 21.
    Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nord. J. Comput. 2(2), 250–273 (1995)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Spears, W.M.: A compression algorithm for probability transition matrices. SIAM J. Matrix Anal. Appl. 20(1), 60–77 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sproston, J., Donatelli, S.: Backward bisimulation in Markov chain model checking. IEEE Trans. Softw. Eng. 32(8), 531–546 (2006)CrossRefGoogle Scholar
  24. 24.
    Tang, Q., van Breugel, F.: Computing probabilistic bisimilarity distances viapolicy iteration. In: 27th International Conference on Concurrency Theory, CONCUR 2016, 23-26 August 2016, Québec City, Canada, pp. 22:1–22:15 (2016)Google Scholar
  25. 25.
    Tkachev, I., Abate, A.: Formula-free finite abstractions for linear temporal verification of stochastic hybrid systems. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 283–292. ACM (2013)Google Scholar
  26. 26.
    Wu, H., Noé, F.: Probability distance based compression of hidden Markov models. Multiscale Model. Simul. 8(5), 1838–1861 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Google Inc.Mountain ViewUSA
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations