Beyond Subterm-Convergent Equational Theories in Automated Verification of Stateful Protocols

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10204)

Abstract

The Tamarin prover is a state-of-the-art protocol verification tool. It supports verification of both trace and equivalence properties, a rich protocol specification language that includes support for global, mutable state and allows the user to specify cryptographic primitives as an arbitrary subterm convergent equational theory, in addition to several built-in theories, which include, among others, Diffie-Hellman exponentiation.

In this paper, we improve the underlying theory and the tool to allow for more general user-specified equational theories: our extension supports arbitrary convergent equational theories that have the finite variant property, making Tamarin the first tool to support at the same time this large set of user-defined equational theories, protocols with global mutable state, an unbounded number of sessions, and complex security properties. We demonstrate the effectiveness of this generalization by analyzing several protocols that rely on blind signatures, trapdoor commitment schemes, and ciphertext prefixes that were previously out of scope.

Notes

Acknowledgments

This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 645865-SPOOC), and by the CNRS project PEPS JCJC VESPA.

References

  1. 1.
    Adida, B.: Helios: web-based open-audit voting. In: Proceedings of the 17th USENIX Security Symposium, pp. 335–348. USENIX Association (2008)Google Scholar
  2. 2.
    Anantharaman, S., Narendran, P., Rusinowitch, M.: Intruders with caps. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 20–35. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73449-9_4 CrossRefGoogle Scholar
  3. 3.
    Arapinis, M., Ritter, E., Ryan, M.: StatVerif: verification of stateful processes. In: Proceedings of the 24th IEEE Computer Security Foundations Symposium (CSF 2011), pp. 33–47. IEEE Press (2011)Google Scholar
  4. 4.
    Armando, A., et al.: The AVISPA tool for the automated validation of internet security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). doi:10.1007/11513988_27 CrossRefGoogle Scholar
  5. 5.
    Basin, D., Cremers, C.: Know your enemy: compromising adversaries in protocol analysis. ACM Trans. Inf. Syst. Secur. 17(2), 7:1–7:31 (2014). http://doi.acm.org/10.1145/2658996 CrossRefGoogle Scholar
  6. 6.
    Basin, D., Dreier, J., Sasse, R.: Automated symbolic proofs of observational equivalence. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM (2015)Google Scholar
  7. 7.
    Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for security protocols. J. Logic Algebraic Program. 75(1), 3–51 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Blanchet, B., Smyth, B.: Automated reasoning for equivalences in the applied pi calculus with barriers. In: Proceedings of the 29th Computer Security Foundations Symposium (CSF 2016), pp. 310–324. IEEE Computer Society (2016)Google Scholar
  9. 9.
    Blanchet, B., Smyth, B., Cheval, V.: Automatic Cryptographic Protocol Verifier, User Manual and Tutorial (2016)Google Scholar
  10. 10.
    Chadha, R., Cheval, V., Ciobâcă, Ş., Kremer, S.: Automated verification of equivalence properties of cryptographic protocol. ACM Trans. Comput. Logic, 17(4) (2016). Article 23Google Scholar
  11. 11.
    Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology: Proceedings of CRYPTO 1982, pp. 199–203. Plenum Press (1982)Google Scholar
  12. 12.
    Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: negative tests and non-determinism. In: 18th Conference on Computer and Communications Security (CCS 2011). ACM, Chicago, October 2011Google Scholar
  13. 13.
    Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005). doi:10.1007/978-3-540-32033-3_22 CrossRefGoogle Scholar
  14. 14.
    Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic protocols. J. Comput. Secur. 14(1), 1–43 (2006)CrossRefGoogle Scholar
  15. 15.
    Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1_38 CrossRefGoogle Scholar
  16. 16.
    Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic voting protocols. J. Comput. Secur. 17, 435–487 (2009)CrossRefMATHGoogle Scholar
  17. 17.
    Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equational theories in automated verification of stateful protocols. Technical report, HAL (2017). https://hal.inria.fr/hal-01430490/
  18. 18.
    Dreier, J., Kassem, A., Lafourcade, P.: Formal analysis of e-cash protocols. In: SECRYPT 2015 - Proceedings of the 12th International Conference on Security and Cryptography, pp. 65–75. SciTePress (2015)Google Scholar
  19. 19.
    Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03829-7_1 CrossRefGoogle Scholar
  20. 20.
    Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Logic Algebraic Program. 81(7–8), 898–928 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993). doi:10.1007/3-540-57220-1_66 CrossRefGoogle Scholar
  22. 22.
    Guttman, J.D., Ramsdell, J.D.: CPSA: a cryptographic protocol shapes analyzer (2009). http://hackage.haskell.org/package/cpsa
  23. 23.
    Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: ACM Workshop on Privacy in the Electronic Society (WPES 2005), pp. 61–70. ACM (2005)Google Scholar
  24. 24.
    Kremer, S., Künnemann, R.: Automated analysis of security protocols with global state. J. Comput. Secur. 24, 583–616 (2016). https://hal.inria.fr/hal-01351388 CrossRefGoogle Scholar
  25. 25.
    Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_48 CrossRefGoogle Scholar
  26. 26.
    Okamoto, T.: An electronic voting scheme. In: IFIP World Conference on IT Tools, pp. 21–30 (1996)Google Scholar
  27. 27.
    Ramsdell, J.D., Dougherty, D.J., Guttman, J.D., Rowe, P.D.: A hybrid analysis for security protocols with state. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 272–287. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10181-1_17 Google Scholar
  28. 28.
    Santiago, S., Escobar, S., Meadows, C., Meseguer, J.: A formal definition of protocol indistinguishability and its verification using Maude-NPA. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp. 162–177. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11851-2_11 Google Scholar
  29. 29.
    Schmidt, B.: Formal Analysis of Key Exchange Protocols and Physical Protocols. Ph.D. dissertation, ETH Zurich (2012)Google Scholar
  30. 30.
    Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.: Automated analysis of Diffie-Hellman protocols and advanced security properties. In: Computer Security Foundations Symposium (CSF), pp. 78–94. IEEE (2012)Google Scholar
  31. 31.

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.LORIA, CNRS & Inria & Université de LorraineNancyFrance
  2. 2.Department of Computer ScienceETH ZurichZurichSwitzerland

Personalised recommendations