Advertisement

Combining Differential Privacy and Mutual Information for Analyzing Leakages in Workflows

  • Martin PettaiEmail author
  • Peeter Laud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10204)

Abstract

Workflows are a notation for business processes, focusing on tasks and data flows between them. We have designed and implemented a method for analyzing leakages in workflows by combining differential privacy and mutual information. The input of the method is a description of leakages for each workflow component, using either differential-privacy- or mutual-information-based quantification (whichever is known for the component). The differential-privacy-based bounds are combined using the triangle inequality and are then converted to mutual-information-based bounds. Then the bounds for the components are combined using a maximum-flow algorithm. The output of the method is a mutual-information-based quantification of leakages of the whole workflow.

Keywords

Mutual Information Triangle Inequality Maximum Flow Output Port Secret Sharing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was funded by the Air Force Research laboratory (AFRL) and Defense Advanced Research Projects Agency (DARPA) under contract FA8750-16-C-0011. The views expressed are those of the author(s) and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This work has also been supported by Estonian Research Council, grant No. IUT27-1.

References

  1. 1.
    Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: On the information leakage of differentially-private mechanisms. J. Comput. Secur. 23(4), 427–469 (2015)CrossRefGoogle Scholar
  2. 2.
    Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of information leaks. In: 30th IEEE Symposium on Security and Privacy (S&P 2009), 17–20 May 2009, Oakland, pp. 141–153. IEEE Computer Society (2009)Google Scholar
  3. 3.
    Barros, J., Servetto, S.D.: Network information flow with correlated sources. IEEE Trans. Inf. Theory 52(1), 155–170 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning for differential privacy. ACM Trans. Program. Lang. Syst. 35(3), 9 (2013)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 390–404. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12002-2_33 CrossRefGoogle Scholar
  6. 6.
    Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007)CrossRefGoogle Scholar
  7. 7.
    Cuff, P., Yu, L.: Differential privacy as a mutual information constraint. In: CCS 2016 (2016). http://arxiv.org/pdf/1608.03677
  8. 8.
    Dumas, M., García-Bañuelos, L., Laud, P.: Differential privacy analysis of data processing workflows. In: Kordy, B., Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp. 62–79. Springer, Cham (2016). doi: 10.1007/978-3-319-46263-9_4 CrossRefGoogle Scholar
  9. 9.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). doi: 10.1007/11787006_1 CrossRefGoogle Scholar
  10. 10.
    Ebadi, H., Sands, D.: Featherweight PINQ. CoRR, abs/1505.02642 (2015)Google Scholar
  11. 11.
    Frau, S., Gorrieri, R., Ferigato, C.: Petri net security checker: structural non-interference at work. In: Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 210–225. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01465-9_14 CrossRefGoogle Scholar
  12. 12.
    Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent types for differential privacy. In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, 23–25 January 2013, pp. 357–370. ACM (2013)Google Scholar
  13. 13.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)Google Scholar
  14. 14.
    Gover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)Google Scholar
  15. 15.
    McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capacity. In: Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, 7–13 June 2008, pp. 193–205. ACM (2008)Google Scholar
  16. 16.
    McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul, N. (eds.) Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2009, Providence, 29 June–2 July 2009, pp. 19–30. ACM (2009)Google Scholar
  17. 17.
    Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential privacy. In: Hudak, P., Weirich, S. (eds.) Proceeding of the 15th ACM SIGPLAN International Conference on Functional Programming, ICFP 2010, Baltimore, 27–29 September 2010, pp. 157–168. ACM (2010)Google Scholar
  18. 18.
    Smith, G.: On the foundations of quantitative information flow. In: Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00596-1_21 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Cybernetica ASTartuEstonia

Personalised recommendations