Confluence of Graph Rewriting with Interfaces

  • Filippo Bonchi
  • Fabio Gadducci
  • Aleks Kissinger
  • Paweł Sobociński
  • Fabio ZanasiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10201)


For terminating double-pushout (DPO) graph rewriting systems confluence is, in general, undecidable. We show that confluence is decidable for an extension of DPO rewriting to graphs with interfaces. This variant is important due to it being closely related to rewriting of string diagrams. We show that our result extends, under mild conditions, to decidability of confluence for terminating rewriting systems of string diagrams in symmetric monoidal categories.


Confluence DPO rewriting systems Adhesive categories PROPs String diagrams 



Aleks Kissinger and Fabio Zanasi acknowledge support from the ERC under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant no. 320571. The work of Filippo Bonchi has been partly supported by the project ANR-16-CE25-0011 REPAS and Labex MILYON/ANR-10-LABX-0070. The work of Fabio Gadducci has been partly supported by the project PRA_2016_64 “Through the fog” funded by the University of Pisa.


  1. 1.
    Baez, J., Erbele, J.: Categories in control. Theory Appl. Categ. 30, 836–881 (2015)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Baldan, P., Gadducci, F., Sobociński, P.: Adhesivity is not enough: local church-rosser revisited. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 48–59. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22993-0_8 CrossRefGoogle Scholar
  3. 3.
    Bauer, G., Otto, F.: Finite complete rewriting systems and the complexity of the word problem. Acta Inform. 21(5), 521–540 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P., Zanasi, F.: Rewriting modulo symmetric monoidal structure. In: LiCS 2016, pp. 710–719. ACM (2016)Google Scholar
  5. 5.
    Bonchi, F., Gadducci, F., König, B.: Synthesising CCS bisimulation using graph rewriting. Inf. Comput. 207(1), 14–40 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bonchi, F., Sobociński, P., Zanasi, F.: A categorical semantics of signal flow graphs. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 435–450. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44584-6_30 Google Scholar
  7. 7.
    Bonchi, F., Sobocinski, P., Zanasi, F.: Full abstraction for signal flow graphs. In: POPL 2015, pp. 515–526. ACM (2015)Google Scholar
  8. 8.
    Bruggink, H.J.S., Cauderlier, R., Hülsbusch, M., König, B.: Conditional reactive systems. In: FSTTCS 2011, LIPIcs, vol. 13, pp. 191–203. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)Google Scholar
  9. 9.
    Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connection. Theor. Comput. Sci. 286(2), 247–292 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comput. Sci. 366(1–2), 98–120 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23217-6_21 CrossRefGoogle Scholar
  12. 12.
    Burroni, A.: Higher dimensional word problems with applications to equational logic. Theor. Comput. Sci. 115(1), 43–62 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Carboni, A.: Matrices, relations, and group representations. J. Algebra 136(1), 497–529 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carboni, A., Walters, R.F.C.: Cartesian bicategories I. J. Pure Appl. Algebra 49(1–2), 11–32 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70583-3_25 CrossRefGoogle Scholar
  16. 16.
    Coecke, B., Duncan, R., Kissinger, A., Wang, Q.: Strong complementarity and non-locality in categorical quantum mechanics. In: LiCS 2012, pp. 245–254. ACM (2012)Google Scholar
  17. 17.
    Corradini, A.: On the definition of parallel independence in the algebraic approaches to graph transformation. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946, pp. 101–111. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-50230-4_8 CrossRefGoogle Scholar
  18. 18.
    Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30203-2_12 CrossRefGoogle Scholar
  19. 19.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting. In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp. 151–166. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24727-2_12 CrossRefGoogle Scholar
  20. 20.
    Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional information structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 284–293. Springer, Heidelberg (1976). doi: 10.1007/3-540-07854-1_188 CrossRefGoogle Scholar
  21. 21.
    Fiore, M., Devesas Campos, M.: The algebra of directed acyclic graphs. In: Coecke, B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. LNCS, vol. 7860, pp. 37–51. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38164-5_4 CrossRefGoogle Scholar
  22. 22.
    Fong, B.: Decorated cospans. Theory Appl. Categ. 30(33), 1096–1120 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Fong, B., Rapisarda, P., Sobociński, P.: A categorical approach to open interconnected dynamical systems. In: LiCS 2016, pp. 495–504. ACM (2016)Google Scholar
  24. 24.
    Gadducci, F.: Graph rewriting for the \(\pi \)-calculus. Math. Struct. Comput. Sci. 17(3), 407–437 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gadducci, F., Heckel, R.: An inductive view of graph transformation. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 223–237. Springer, Heidelberg (1998). doi: 10.1007/3-540-64299-4_36 CrossRefGoogle Scholar
  26. 26.
    Ghica, D.R.: Diagrammatic reasoning for delay-insensitive asynchronous circuits. In: Coecke, B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. LNCS, vol. 7860, pp. 52–68. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38164-5_5 CrossRefGoogle Scholar
  27. 27.
    Huet, G., Lankford, D.: On the uniform halting problem for term rewriting systems. Technical report 283, IRIA (1978)Google Scholar
  28. 28.
    Hyland, M., Power, J.: Lawvere theories and monads. In: Plotkin Festschrift, ENTCS, vol. 172, pp. 437–458. Elsevier, Amsterdam (2007)Google Scholar
  29. 29.
    Joyal, A., Street, R.: The geometry of tensor calculus, I. Adv. Math. 88(1), 55–112 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kapur, D., Narendran, P., Otto, F.: On ground-confluence of term rewriting systems. Inf. Comput. 86(1), 14–31 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kissinger, A.: Finite matrices are complete for (dagger)-hypergraph categories. arXiv:1406.5942 [math.CT]
  32. 32.
    Kissinger, A., Zamdzhiev, V.: Quantomatic: a proof assistant for diagrammatic reasoning. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 326–336. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-21401-6_22 CrossRefGoogle Scholar
  33. 33.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)Google Scholar
  34. 34.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theor. Inf. Appl. 39(3), 511–546 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lafont, Y.: Towards an algebraic theory of Boolean circuits. J. Pure Appl. Algebra 184(2–3), 257–310 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    MacLane, S.: Categorical algebra. Bull. Am. Math. Soc. 71(1), 40–106 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Meseguer, J., Montanari, U.: Petri nets are monoids. Inf. Comput. 88(2), 105–155 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Mimram, S.: Computing critical pairs in 2-dimensional rewriting systems. In: RTA, LIPIcs, vol. 6, pp. 227–242. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)Google Scholar
  39. 39.
    Mimram, S.: Towards 3-dimensional rewriting theory. Logical Methods Comput. Sci. 10(2:1), 1–47 (2014)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Padawitz, P.: New results on completeness and consistency of abstract data types. In: Dembiński, P. (ed.) MFCS 1980. LNCS, vol. 88, pp. 460–473. Springer, Heidelberg (1980). doi: 10.1007/BFb0022525 CrossRefGoogle Scholar
  41. 41.
    Pavlovic, D.: Monoidal computer I: basic computability by string diagrams. Inf. Comput. 226, 94–116 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Plump, D.: Hypergraph rewriting: critical pairs and undecidability of confluence. In: Term Graph Rewriting: Theory and Practice, pp. 201–213. Wiley (1993)Google Scholar
  43. 43.
    Plump, D.: Checking graph-transformation systems for confluence. In: Manipulation of Graphs, Algebras and Pictures, ECEASST, vol. 26. EASST (2010)Google Scholar
  44. 44.
    Sassone, V., Sobociński, P.: Reactive systems over cospans. In: LiCS 2005, pp. 311–320. ACM (2005)Google Scholar
  45. 45.
    Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics. LNP, vol. 813, pp. 289–355. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  46. 46.
    Sobociński, P.: Deriving process congruences from reaction rules. Ph.D. thesis, BRICS, University of Aarhus (2004)Google Scholar
  47. 47.
    Sobociński, P., Stephens, O.: A programming language for spatial distribution of net systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 150–169. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07734-5_9 CrossRefGoogle Scholar
  48. 48.
    Street, R.: Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra 8(2), 149–181 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Filippo Bonchi
    • 1
  • Fabio Gadducci
    • 2
  • Aleks Kissinger
    • 3
  • Paweł Sobociński
    • 4
  • Fabio Zanasi
    • 5
    Email author
  1. 1.CNRS, ENS de LyonLyonFrance
  2. 2.University of PisaPisaItaly
  3. 3.Radboud University NijmegenNijmegenThe Netherlands
  4. 4.University of SouthamptonSouthamptonUK
  5. 5.University College LondonLondonUK

Personalised recommendations