Advertisement

Constrained Pseudorandom Functions for Unconstrained Inputs Revisited: Achieving Verifiability and Key Delegation

  • Pratish DattaEmail author
  • Ratna Dutta
  • Sourav Mukhopadhyay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10175)

Abstract

In EUROCRYPT 2016, Deshpande et al. presented a construction of constrained pseudorandom function (CPRF) supporting inputs of unconstrained polynomial length based on indistinguishability obfuscation and injective pseudorandom generators. Their construction was claimed to be selectively secure. We demonstrate in this paper that their CPRF construction can actually be proven secure not in the selective model, rather in a significantly weaker security model where the adversary is forbidden to query constrained keys adaptively. We also show how to allow adaptive constrained key queries in their construction by innovating new technical ideas. We suitably redesign the security proof. We emphasize that our modification does not involve any additional heavy duty cryptographic tool. Our improved CPRF is further enhanced to present the first constructions of constrained verifiable pseudorandom function (CVPRF) and delegatable constrained pseudorandom function (DCPRF) supporting inputs of unconstrained polynomial length, employing only standard public key encryption (PKE).

Keywords

Constrained pseudorandom functions Verifiable constrained pseudorandom function Key delegation Indistinguishability obfuscation 

References

  1. 1.
    Abusalah, H., Fuchsbauer, G.: Constrained PRFs for unbounded inputs with short keys. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 445–463. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-39555-5_24 CrossRefGoogle Scholar
  2. 2.
    Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained PRFs for unbounded inputs. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 413–428. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29485-8_24 CrossRefGoogle Scholar
  3. 3.
    Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating RAM computations with adaptive soundness and privacy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 3–30. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53644-5_1 CrossRefGoogle Scholar
  4. 4.
    Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_2 CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54631-0_30 CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42045-0_15 CrossRefGoogle Scholar
  7. 7.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54631-0_29 CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_1 CrossRefGoogle Scholar
  9. 9.
    Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom functions: verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522 (2014)Google Scholar
  10. 10.
    Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions for unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 124–153. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49896-5_5 CrossRefGoogle Scholar
  11. 11.
    Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions for unconstrained inputs. Cryptology ePrint Archive, Report 2016/301, Version 20160819:153952 (2016)Google Scholar
  12. 12.
    Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10879-7_7 Google Scholar
  13. 13.
    Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45608-8_5 Google Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 40–49. IEEE (2013)Google Scholar
  15. 15.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33(4), 792–807 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained pseudorandom functions. Cryptology ePrint Archive, Report 2014/720 (2014)Google Scholar
  17. 17.
    Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudorandom functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_4 CrossRefGoogle Scholar
  18. 18.
    Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: The 2015 Conference on Innovations in Theoretical Computer Science, pp. 163–172. ACM (2015)Google Scholar
  19. 19.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: The 2013 ACM SIGSAC Conference on Computer Communications Security, pp. 669–684. ACM (2013)Google Scholar
  20. 20.
    Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: The 47th Annual ACM on Symposium on Theory of Computing, pp. 419–428. ACM (2015)Google Scholar
  21. 21.
    Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual Symposium on Foundations of Computer Science, pp. 120–130. IEEE (1999)Google Scholar
  22. 22.
    Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere statistically binding hashing and positional accumulators. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 121–145. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_6 CrossRefGoogle Scholar
  23. 23.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: The 46th Annual ACM Symposium on Theory of Computing, pp. 475–484. ACM (2014)Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Pratish Datta
    • 1
    Email author
  • Ratna Dutta
    • 1
  • Sourav Mukhopadhyay
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations