Carbon Nanotubes

  • Marc Monthioux
  • Philippe Serp
  • Brigitte Caussat
  • Emmanuel Flahaut
  • Manitra Razafinimanana
  • Flavien Valensi
  • Christophe Laurent
  • Alain Peigney
  • David Mesguich
  • Alicia Weibel
  • Wolfgang Bacsa
  • Jean-Marc Broto
Part of the Springer Handbooks book series (SHB)


Carbon nanotubes (CNT s) are remarkable objects that once looked set to revolutionize the technological landscape in the near future. Since the 1990s and for twenty years thereafter, it was repeatedly claimed that tomorrow's society would be shaped by nanotube applications, just as silicon-based technologies dominate society today. Space elevators tethered by the strongest of cables, hydrogen-powered vehicles, artificial muscles: these were just a few of the technological marvels that we were told would be made possible by the science of carbon nanotubes.

Of course, this prediction is still some way from becoming reality; most often the possibilities and potential have been evaluated, but actual technological development is facing the unforgiving rule that drives the transfer of a new material or a new device to market: profitability. New materials, even more so for nanomaterials, no matter how wonderful they are, have to be cheap to produce, constant in quality, easy to handle, and nontoxic. Those are the conditions for an industry to accept a change in its production lines to make them nanocompatible. Consider the example of fullerenes – molecules closely related to nanotubes. The anticipation that surrounded these molecules, first reported in 1985, resulted in the bestowment of a Nobel Prize for their discovery in 1996. However, two decades later, very few fullerene applications have reached the market, suggesting that similarly enthusiastic predictions about nanotubes should be approached with caution, and so should it be with graphene, another member of the carbon nanoform family which joined the game in 2004, again acknowledged by a Nobel Prize in 2010.

There is no denying, however, that the expectations surrounding carbon nanotubes are still high, because of specificities that make them special compared to fullerenes and graphene: their easiness of production, their dual molecule/nano-object nature, their unique aspect ratio, their robustness, the ability of their electronic structure to be given a gap, and their wide typology etc. Therefore, carbon nanotubes may provide the building blocks for further technological progress, enhancing our standard of living.

In this chapter, we first describe the structures, syntheses, growth mechanisms, and properties of carbon nanotubes. Then we introduce nanotube-based materials, which comprise on the one hand those formed by reactions and associations of all-carbon nanotubes with foreign atoms, molecules and compounds, and on the other hand, composites, obtained by incorporating carbon nanotubes in various matrices. Finally, we will provide a list of applications currently on the market, while skipping the potentially endless and speculative list of possible applications.


  1. 8.1
    M. Monthioux, V.L. Kuznetsov: Who should be given the credit for the discovery of carbon nanotubes?, Carbon 44, 1621–1623 (2006)Google Scholar
  2. 8.2
    L.V. Radushkevich, V.M. Lukyanovich: O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zurn. Fis. Chim. 26, 88–95 (1952)Google Scholar
  3. 8.3
    R.T.K. Baker, P.S. Harris: The formation of filamentous carbon. In: Chemistry and Physics of Carbon, Vol. 14, ed. by P.L. Walker Jr., P.A. Thrower (Marcel Dekker, New York 1978) pp. 83–165Google Scholar
  4. 8.4
    S. Iijima: Helical microtubules of graphite carbon, Nature 354, 56–58 (1991)Google Scholar
  5. 8.5
    S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1 nm diameter, Nature 363, 603–605 (1993)Google Scholar
  6. 8.6
    D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Bayers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993)Google Scholar
  7. 8.7
    N. Hamada, S.I. Sawada, A. Oshiyama: New one-dimensional conductors, graphite microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992)Google Scholar
  8. 8.8
    J. Tersoff, R.S. Ruoff: Structural properties of a carbon-nanotube crystal, Phys. Rev. Lett. 73, 676–679 (1994)Google Scholar
  9. 8.9
    N. Wang, Z.K. Tang, G.D. Li, J.S. Chen: Single-walled 4 Å carbon nanotube arrays, Nature 408, 50–51 (2000)Google Scholar
  10. 8.10
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1995)Google Scholar
  11. 8.11
    R.C. Haddon: Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules, Science 261, 1545–1550 (1993)Google Scholar
  12. 8.12
    M. Monthioux, B.W. Smith, B. Burteaux, A. Claye, J. Fisher, D.E. Luzzi: Sensitivity of single-wall nanotubes to chemical processing: An electron microscopy investigation, Carbon 39, 1261–1272 (2001)Google Scholar
  13. 8.13
    H. Allouche, M. Monthioux: Chemical vapor deposition of pyrolytic carbon onto carbon nanotubes. Part II – Structure and texture, Carbon 43, 1265–1278 (2005)Google Scholar
  14. 8.14
    M. Audier, A. Oberlin, M. Oberlin, M. Coulon, L. Bonnetain: Morphology and crystalline order in catalytic carbons, Carbon 19, 217–224 (1981)Google Scholar
  15. 8.15
    N.M. Rodriguez, A. Chambers, R.T. Baker: Catalytic engineering of carbon nanostructures, Langmuir 11, 3862–3866 (1995)Google Scholar
  16. 8.16
    M. Monthioux, L. Noé, L. Dussault, J.-C. Dupin, N. Latorre, T. Ubieto, E. Romeo, C. Royo, A. Monzón, C. Guimon: Texturising and structurising mechanisms of carbon nanofilament during growth, J. Mater. Chem. 17, 4611–4618 (2007)Google Scholar
  17. 8.17
    J. Vera-Agullo, H. Varela-Rizo, J.A. Conesa, C. Almansa, C. Merino, I. Martin-Gullon: Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers, Carbon 45, 2751–2758 (2007)Google Scholar
  18. 8.18
    Y. Saito: Nanoparticles and filled nanocapsules, Carbon 33, 979–988 (1995)Google Scholar
  19. 8.19
    P.J.F. Harris: Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge 1999)Google Scholar
  20. 8.20
    M. Monthioux: Introduction to carbon nanotubes. In: Carbon Meta-Nanotubes: Synthesis, Properties, Applications, ed. by M. Monthioux (Wiley-Blackwell, Chichester 2012) pp. 8–39Google Scholar
  21. 8.21
    M. Monthioux, P. Serp, E. Flahaut, M. Razafinimanana, C. Laurent, A. Peigney, W. Bacsa, J.-M. Broto: Introduction to carbon nanotubes. In: Nanotechnology Handbook, 3rd edn., ed. by B. Bhushan (Springer, Berlin, Heidelberg 2010) pp. 47–118Google Scholar
  22. 8.22
    W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman: Solid C60: A new form of carbon, Nature 347, 354–358 (1990)Google Scholar
  23. 8.23
    L. Fulchieri, Y. Schwob, F. Fabry, G. Flamant, L.F.P. Chibante, D. Laplaze: Fullerene production in a 3-phase AC plasma process, Carbon 38, 797–803 (2000)Google Scholar
  24. 8.24
    K. Saidane, M. Razafinimanana, H. Lange, A. Huczko, M. Baltas, A. Gleizes, J.L. Meunier: Fullerene synthesis in the graphite electrode arc process: local plasma characteristics and correlation with yield, J. Phys. D Appl. Phys. 37, 232–239 (2004)Google Scholar
  25. 8.25
    T.W. Ebbesen, P.M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358, 220–221 (1992)Google Scholar
  26. 8.26
    D. Ugarte: Morphology and structure of graphitic soot particles generated in arc-discharge C60 production, Chem. Phys. Lett. 198, 596–602 (1992)Google Scholar
  27. 8.27
    T.W. Ebbesen: Carbon nanotubes, Ann. Rev. Mater. Sci. 24, 235–264 (1994)Google Scholar
  28. 8.28
    T. Beltz, J. Find, D. Herein, N. Pfänder, T. Rühle, H. Werner, M. Wohlers, R. Schlögl: On the production of different carbon forms by electric arc graphite evaporation, Ber. Bunsen. Phys. Chem. 101, 712–725 (1997)Google Scholar
  29. 8.29
    C. Bernier, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756–758 (1997)Google Scholar
  30. 8.30
    H. Allouche, M. Monthioux, M. Pacheco, M. Razafinimanana, H. Lange, A. Huczko, T.P. Teulet, A. Gleizes, T. Sogabe: Physical characteristics of the graphite-electrode electric-arc as parameters for the formation of single-wall carbon nanotubes. In: Proc. Eurocarbon, Vol. 2 (Deutsche Keramische Gesellschaft, Cologne 2000) pp. 1053–1054Google Scholar
  31. 8.31
    M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, A. Gleizes: Spectroscopic study of an electric arc with Gd and Fe doped anodes for the carbon nanotube formation. In: Proc. 25th Int. Conf. Phenom. Ioniz. Gases, ed. by E. Goto (Nagoya Univ., Nagoya 2001) pp. 297–298Google Scholar
  32. 8.32
    M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, P. Teulet, A. Gleizes, C. Goze, P. Bernier, T. Sogabe: Influence of doped graphite electrode in electric arc for the formation of single wall carbon nanotubes. In: Proc. 6th Eur. Conf. Therm. Plasma Process. – Prog. Plasma Process. Mater., ed. by P. Fauchais (Begell House, New York 2001) pp. 649–654Google Scholar
  33. 8.33
    M. Pacheco, H. Allouche, M. Monthioux, A. Razafinimanana, A. Gleizes: Correlation between the plasma characteristics and the morphology and structure of the carbon phases synthesised by electric arc discharge. In: Proc. 25th Bienn. Conf. Carbon, Lexington 2001, ed. by F. Derbyshire (2001)Google Scholar
  34. 8.34
    M. Pacheco, M. Monthioux, M. Razafinimanana, L. Donadieu, H. Allouche, N. Caprais, A. Gleizes: New factors controlling the formation of single-wall carbon nanotubes by arc plasma. In: Proc. Carbon 2002 Int. Conf., ed. by H.-M. Cheng (Shanxi Chunqiu Audio-Visual, Beijing 2002)Google Scholar
  35. 8.35
    M. Monthioux, M. Pacheco, H. Allouche, M. Razafinimanana, N. Caprais, L. Donnadieu, A. Gleizes: New data about the formation of SWNTs by the electric arc method. In: Electron. Prop. Mol. Nanostructures AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin, Heidelberg 2002) pp. 182–185Google Scholar
  36. 8.36
    H. Lange, A. Huczko, M. Sioda, M. Pacheco, M. Razafinimanana, A. Gleizes: Influence of gadolinium on carbon arc plasma and formation of fullerenes and nanotubes, Plasma Chem. Plasma Process 22, 523–536 (2002)Google Scholar
  37. 8.37
    A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley: Large scale purification of single wall carbon nanotubes: Process, product and characterization, Appl. Phys. A 67, 29–37 (1998)Google Scholar
  38. 8.38
    M. Ishigami, J. Cumings, A. Zettl, S. Chen: A simple method for the continuous production of carbon nanotubes, Chem. Phys. Lett. 319, 457–459 (2000)Google Scholar
  39. 8.39
    Y.L. Hsin, K.C. Hwang, F.R. Chen, J.J. Kai: Production and in-situ metal filling of carbon nanotube in water, Adv. Mater. 13, 830–833 (2001)Google Scholar
  40. 8.40
    H.W. Zhu, X.S. Li, B. Jiang, C.L. Xu, C.L. Zhu, Y.F. Zhu, D.H. Wu, X.H. Chen: Formation of carbon nanotubes in water by the electric arc technique, Chem. Phys. Lett. 366, 664–669 (2002)Google Scholar
  41. 8.41
    T. Sogabe, T. Masuda, K. Kuroda, Y. Hirohaya, T. Hino, T. Ymashina: Preparation of B4C-mixed graphite by pressureless sintering and its air oxidation behavior, Carbon 33, 1783–1788 (1995)Google Scholar
  42. 8.42
    W.K. Maser, P. Bernier, J.M. Lambert, O. Stephan, P.M. Ajayan, C. Colliex, V. Brotons, J.M. Planeix, B. Coq, P. Molinie, S. Lefrant: Elaboration and characterization of various carbon nanostructures, Synth. Met. 81, 243–250 (1996)Google Scholar
  43. 8.43
    A. Mansour, M. Razafinimanana, M. Monthioux, M. Pacheco, A. Gleizes: A significant improvement of both yield and purity during SWCNT synthesis via the electric arc process, Carbon 45, 1651–1661 (2007)Google Scholar
  44. 8.44
    A. Mansour: Caractérisation expérimentale d’un plasma d’arc électrique en vue du contrôle de la synthèse des nanotubes de carbone monoparois, Ph.D. Thesis (University Paul Sabatier, Toulouse 2007)Google Scholar
  45. 8.45
    J. Gavillet, A. Loiseau, J. Thibault, A. Maigné, O. Stéphan, P. Bernier: TEM study of the influence of the catalyst composition on the formation and growth of SWNT. In: Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin, Heidelberg 2002) pp. 202–206Google Scholar
  46. 8.46
    V. Ramarozatovo, A. Mansour, M. Razafinimanana, M. Monthioux, F. Valensi, L. Noé, M. Masquère: Influence of chamber volume in single wall carbon nanotube synthesis by an electric arc, J. Phys. D: Appl. Phys. 45, 345204 (2012)Google Scholar
  47. 8.47
    G.G. Tibbetts, M. Endo, C.P. Beetz: Carbon fibers grown from the vapor phase: A novel material, SAMPE J. 22, 30 (1989)Google Scholar
  48. 8.48
    R.T.K. Baker: Catalytic growth of carbon filaments, Carbon 27, 315–323 (1989)Google Scholar
  49. 8.49
    E. Lamouroux, P. Serp, P. Kalck: Catalytic chemical vapor deposition routes towards single-walled and double-walled carbon nanotubes, Catal. Rev. Sci. Eng. 49, 341–405 (2007)Google Scholar
  50. 8.50
    R. Philippe, A. Morançais, M. Corrias, B. Caussat, Y. Kihn, P. Kalck, D. Plee, P. Gaillard, D. Bernard, P. Serp: Catalytic production of carbon nanotubes by fluidized-bed CVD, Chem. Vap. Depos. 13, 447–457 (2007)Google Scholar
  51. 8.51
    R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite: Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene, J. Catal. 30, 86–95 (1973)Google Scholar
  52. 8.52
    T. Koyama, M. Endo, Y. Oyuma: Carbon fibers obtained by thermal decomposition of vaporized hydrocarbon, Jpn. J. Appl. Phys. 11, 445–449 (1972)Google Scholar
  53. 8.53
    M. Endo, A. Oberlin, T. Koyama: High resolution electron microscopy of graphitizable carbon fiber prepared by benzene decomposition, Jpn. J. Appl. Phys. 16, 1519–1523 (1977)Google Scholar
  54. 8.54
    N.M. Rodriguez: A review of catalytically grown carbon nanofibers, J. Mater. Res. 8, 3233–3250 (1993)Google Scholar
  55. 8.55
    W.R. Davis, R.J. Slawson, G.R. Rigby: An unusual form of carbon, Nature 171, 756 (1953)Google Scholar
  56. 8.56
    H.P. Boehm: Carbon from carbon monoxide disproportionation on nickel and iron catalysts; morphological studies and possible growth mechanisms, Carbon 11, 583–590 (1973)Google Scholar
  57. 8.57
    M. Audier, A. Oberlin, M. Coulon: Crystallographic orientations of catalytic particles in filamentous carbon; case of simple conical particles, J. Cryst. Growth 55, 546–549 (1981)Google Scholar
  58. 8.58
    M. Audier, M. Coulon: Kinetic and microscopic aspects of catalytic carbon growth, Carbon 23, 317–323 (1985)Google Scholar
  59. 8.59
    A. Thaib, G.A. Martin, P. Pinheiro, M.C. Schouler, P. Gadelle: Formation of carbon nanotubes from the carbon monoxide disproportionation reaction over Co/Al2O3 and Co/SiO2 catalysts, Catal. Lett. 63, 135–141 (1999)Google Scholar
  60. 8.60
    P. Pinheiro, M.C. Schouler, P. Gadelle, M. Mermoux, E. Dooryhée: Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts, Carbon 38, 1469–1479 (2000)Google Scholar
  61. 8.61
    C. Laurent, E. Flahaut, A. Peigney, A. Rousset: Metal nanoparticles for the catalytic synthesis of carbon nanotubes, New J. Chem. 22, 1229–1237 (1998)Google Scholar
  62. 8.62
    A. Peigney, C. Laurent, F. Dobigeon, A. Rousset: Carbon nanotubes grown in situ by a novel catalytic method, J. Mater. Res. 12, 613–615 (1997)Google Scholar
  63. 8.63
    D. Kunii, O. Levenspiel: Fluidization Engineering (Butterworth-Heinemann, Boston 1991)Google Scholar
  64. 8.64
    S. Shukrullah, N.M. Mohamed, M.S. Shaharun, M.Y. Naz: Mass production of carbon nanotubes using fluidized bed reactor: A short review, Trends Appl. Sci. Res. 9, 121–131 (2014)Google Scholar
  65. 8.65
    E. Flahaut: Synthèse par voir catalytique et caractérisation de composites nanotubes de carbone-metal-oxyde poudres et matériaux denses, Ph.D. Thesis (Univers. Paul Sabatier, Toulouse 1999)Google Scholar
  66. 8.66
    E. Flahaut, R. Bacsa, A. Peigney, C. Laurent: Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun. (2003) doi: 10.1039/B301514A
  67. 8.67
    V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt: The study of nanotubules produced by catalytic method, Chem. Phys. Lett. 223, 329–335 (1994)Google Scholar
  68. 8.68
    V. Ivanov, A. Fonseca, J.B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, X.B. Zhang: Catalytic production and purification of nanotubules having fullerene-scale diameters, Carbon 33, 1727–1738 (1995)Google Scholar
  69. 8.69
    K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A. Fudala, A. Lucas: Catalytic synthesis of carbon nanotubes using zeolite support, Zeolites 17, 416–423 (1996)Google Scholar
  70. 8.70
    Y.H. Li, H.Q. Gao, J.H. Yang, W.L. Gao, J. Xiang, Q.Y. Li: Multi-wall carbon nanotubes supported on carbon fiber paper synthesized by simple chemical vapor deposition, Mat. Sci.Eng. B 187, 113–119 (2014)Google Scholar
  71. 8.71
    A. Govindaraj, E. Flahaut, C. Laurent, A. Peigney, A. Rousset, C.N.R. Rao: An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg1−xMxAl2O4 spinel catalysts, J. Mater. Res. 14, 2567–2576 (1999)Google Scholar
  72. 8.72
    E. Flahaut, A. Peigney, C. Laurent, A. Rousset: Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes, J. Mater. Chem. 10, 249–252 (2000)Google Scholar
  73. 8.73
    J. Kong, A.M. Cassel, H. Dai: Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett. 292, 567–574 (1998)Google Scholar
  74. 8.74
    E. Flahaut, A. Peigney, W.S. Bacsa, R.R. Bacsa, C. Laurent: CCVD synthesis of carbon nanotubes from (Mg,Co,Mo)O catalysts: Influence of the proportions of cobalt and molybdenum, J. Mater. Chem. 14, 646–653 (2004)Google Scholar
  75. 8.75
    E. Flahaut, C. Laurent, A. Peigney: Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon 43, 375–383 (2005)Google Scholar
  76. 8.76
    R. Marangoni, P. Serp, R. Feurrer, Y. Kihn, P. Kalck, C. Vahlas: Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalyst and ethylene, Carbon 39, 443–449 (2001)Google Scholar
  77. 8.77
    R. Sen, A. Govindaraj, C.N.R. Rao: Carbon nanotubes by the metallocene route, Chem. Phys. Lett. 267, 276–280 (1997)Google Scholar
  78. 8.78
    Y.Y. Fan, H.M. Cheng, Y.L. Wei, G. Su, S.H. Shen: The influence of preparation parameters on the mass production of vapor grown carbon nanofibers, Carbon 38, 789–795 (2000)Google Scholar
  79. 8.79
    L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, D. Wu: Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon 39, 329–335 (2001)Google Scholar
  80. 8.80
    F. Toni, H. Xing, J. Walter, V. Strauss, T.J. Nacken, C. Damma, K.E. Wirth, D. Guldi, W. Peukert: Production of well dispersible single walled carbon nanotubes via a floating catalyst-method, Chem. Eng. Sci. 138, 385–395 (2015)Google Scholar
  81. 8.81
    N. Sankararamakrishnan, D. Chauhan, J. Dwivedi: Synthesis of functionalized carbon nanotubes by floating catalytic chemical vapor deposition method and their sorption behavior towards arsenic, Chem. Eng. J. 284, 599–608 (2016)Google Scholar
  82. 8.82
    M. Glerup, H. Kanzow, R. Almairac, M. Castignolles, P. Bernier: Synthesis of multi-walled carbon nanotubes and nano-fibres using aerosol method with metal-ions as the catalyst precursors, Chem. Phys. Lett. 377, 293–298 (2003)Google Scholar
  83. 8.83
    Z. Zhou, L. Ci, L. Song, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, W. Zhou, G. Wang, S. Xie: Producing cleaner double-walled carbon nanotubes in a floating catalyst system, Carbon 41, 2607–2611 (2003)Google Scholar
  84. 8.84
    F. Rohmund, L.K.L. Falk, F.E.B. Campbell: A simple method for the production of large arrays of aligned carbon nanotubes, Chem. Phys. Lett. 328, 369–373 (2000)Google Scholar
  85. 8.85
    G.G. Tibbetts, C.A. Bernardo, D.W. Gorkiewicz, R.L. Alig: Role of sulfur in the production of carbon fibers in the vapor phase, Carbon 32, 569–576 (1994)Google Scholar
  86. 8.86
    H. Chen, M. Chen, Y. Zhang, Q. Li: Rational control on floating catalysts for the growth of carbon nanotube assemblies: From vertically aligned carbon nanotube arrays to carbon nanotube films, Appl. Surf. Sci. 353, 651–661 (2015)Google Scholar
  87. 8.87
    W.Q. Han, P. Kholer-Riedlich, T. Seeger, F. Ernst, M. Ruhle, N. Grobert, W.K. Hsu, B.H. Chang, Y.Q. Zhu, H.W. Kroto, M. Terrones, H. Terrones: Aligned CNx nanotubes by pyrolysis of ferrocene under NH3 atmosphere, Appl. Phys. Lett. 77, 1807–1809 (2000)Google Scholar
  88. 8.88
    L. Ci, Z. Rao, Z. Zhou, D. Tang, X. Yan, Y. Liang, D. Liu, H. Yuan, W. Zhou, G. Wang, W. Liu, S. Xie: Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system, Chem. Phys. Lett. 359, 63–67 (2002)Google Scholar
  89. 8.89
    S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360, 229–234 (2002)Google Scholar
  90. 8.90
    R.E. Smalley, J.H. Hafner, D.T. Colbert, K. Smith: Catalytic growth of single-wall carbon nanotubes from metal particles, US Patent (Application) 19980601010903 (1998)Google Scholar
  91. 8.91
    P. Nikolaev: Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the HiPco process, J. Nanosci. Nanotechnol. 4, 307–316 (2004)Google Scholar
  92. 8.92
    T. Kyotani, L.F. Tsai, A. Tomita: Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater. 8, 2109–2113 (1996)Google Scholar
  93. 8.93
    T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporisation, Chem. Phys. Lett. 243, 49–54 (1995)Google Scholar
  94. 8.94
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, D.T. Colbert, G. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273, 487–493 (1996)Google Scholar
  95. 8.95
    M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima: Single wall carbon nanotube formation by laser ablation using double targets of carbon and metal, Chem. Phys. Lett. 278, 102–106 (1997)Google Scholar
  96. 8.96
    T.M. Gruenberger, J. Gonzalez-Aguilar, F. Fabry, L. Fulchieri, E. Grivei, N. Probst, G. Flamant, H. Okuno, J.C. Charlier: Production of carbon nanotubes and other nanostructures via continuous 3-phase AC plasma processing, Fuller. Nanotub. Carbon Nanostruct. 12, 571–581 (2004)Google Scholar
  97. 8.97
    M.J. Heben, T.A. Bekkedhal, D.L. Schultz, K.M. Jones, A.C. Dillon, C.J. Curtis, C. Bingham, J.R. Pitts, A. Lewandowski, C.L. Fields: Production of single wall carbon nanotubes using concentrated sunlight. In: Proc. Symp. Recent Adv. Chem. Phys. Fuller. Rel. Mater., ed. by K.M. Kadish, R.S. Ruoff (Electrochemical Society, Pennington 1996) pp. 803–811Google Scholar
  98. 8.98
    D. Laplaze, P. Bernier, C. Journet, G. Vié, G. Flamant, E. Philippot, M. Lebrun: Evaporation of graphite using a solar furnace. In: Proc. 8th Int. Symp. Solar Conc. Technol., Köln, 1996, ed. by M. Becker, M. Balmer (Müller, Heidelberg 1997) pp. 1653–1656Google Scholar
  99. 8.99
    G. Flamant, M. Bijeire, D. Luxembourg: Modelling of a solar reactor for single wall nanotubes synthesis, ASME J. Solar Energ. Eng. 128, 1–124 (2006)Google Scholar
  100. 8.100
    W.K. Hsu, J.P. Hare, M. Terrones, H.W. Kroto, D.R.M. Walton, P.J.F. Harris: Condensed-phase nanotubes, Nature 377, 687 (1995)Google Scholar
  101. 8.101
    W.S. Cho, E. Hamada, Y. Kondo, K. Takayanagi: Synthesis of carbon nanotubes from bulk polymer, Appl. Phys. Lett. 69, 278–279 (1996)Google Scholar
  102. 8.102
    Y.L. Li, Y.D. Yu, Y. Liang: A novel method for synthesis of carbon nanotubes: Low temperature solid pyrolysis, J. Mater. Res. 12, 1678–1680 (1997)Google Scholar
  103. 8.103
    M.L. Terranova, S. Piccirillo, V. Sessa, P. Sbornicchia, M. Rossi, S. Botti, D. Manno: Growth of single-walled carbon nanotubes by a novel technique using nanosized graphite as carbon source, Chem. Phys. Lett. 327, 284–290 (2000)Google Scholar
  104. 8.104
    R.L. Vander Wal, T. Ticich, V.E. Curtis: Diffusion flame synthesis of single-walled carbon nanotubes, Chem. Phys. Lett. 323, 217–223 (2000)Google Scholar
  105. 8.105
    I. Gunjishima, T. Inoue, S. Yamamuro, K. Sumiyama, A. Okamoto: Synthesis of vertically aligned, double-walled carbon nanotubes from highly active Fe-V-O nanoparticles, Carbon 45, 1193–1199 (2007)Google Scholar
  106. 8.106
    G. Zhong, T. Iwasaki, J. Robertson, H. Kawarada: Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes, J. Phys. Chem. B 111, 1907–1910 (2007)Google Scholar
  107. 8.107
    H. Cui, G. Eres, J.Y. Howe, A. Puretzki, M. Varela, D.B. Geohegan, D.H. Lowndes: Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition, Chem. Phys. Lett. 374, 222–228 (2003)Google Scholar
  108. 8.108
    Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowdens: Effect of film thickness on carbon nanotube growth by selective area chemical vapor deposition, Appl. Phys. Lett. 78, 1394–1396 (2001)Google Scholar
  109. 8.109
    I.T. Han, B.K. Kim, H.J. Kim, M. Yang, Y.W. Jin, S. Jung, N. Lee, S.K. Kim, J.M. Kim: Effect of Al and catalyst thickness on the growth of carbon nanotubes and application to gated field emitter arrays, Chem. Phys. Lett. 400, 139–144 (2004)Google Scholar
  110. 8.110
    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zha, G. Wang: Large scale synthesis of aligned carbon nanotubes, Science 274, 1701–1703 (1996)Google Scholar
  111. 8.111
    F. Zheng, L. Liang, Y. Gao, J.H. Sukamto, L. Aardahl: Carbon nanotubes synthesis using mesoporous silica templates, Nano Lett. 2, 729–732 (2002)Google Scholar
  112. 8.112
    S.H. Jeong, O.-K. Lee, K.H. Lee, S.H. Oh, C.G. Park: Preparation of aligned carbon nanotubes with prescribed dimension: Template synthesis and sonication cutting approach, Chem. Mater. 14, 1859–1862 (2002)Google Scholar
  113. 8.113
    N.S. Kim, Y.T. Lee, J. Park, H. Ryu, H.J. Lee, S.Y. Choi, J. Choo: Dependence of vertically aligned growth of carbon nanotubes on catalyst, J. Phys. Chem. B 106, 9286–9290 (2002)Google Scholar
  114. 8.114
    C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, W.B. Choi, N.S. Lee, G.-S. Park, J.M. Kim: Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett. 312, 461–468 (1999)Google Scholar
  115. 8.115
    W.D. Zhang, Y. Wen, S.M. Liu, W.C. Tjiu, G.Q. Xu, L.M. Gan: Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates, Carbon 40, 1981–1989 (2002)Google Scholar
  116. 8.116
    S. Huang, L. Dai, A.W.H. Mau: Controlled fabrication of large scale aligned carbon nanofiber/nanotube patterns by photolithography, Adv. Mater. 14, 1140–1143 (2002)Google Scholar
  117. 8.117
    T. Sun, G. Wang, H. Liu, L. Feng, D. Zhu: Control over the wettability of an aligned carbon nanotube film, J. Am. Chem. Soc. 125, 14996–14997 (2003)Google Scholar
  118. 8.118
    C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber: Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B 106, 2429–2433 (2002)Google Scholar
  119. 8.119
    Y. Huh, J.Y. Lee, J. Cheon, Y.K. Hong, J.Y. Koo, T.J. Lee, C.J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition, J. Mater. Chem. 13, 2297–2300 (2003)Google Scholar
  120. 8.120
    M. Paillet, V. Jourdain, P. Poncharal, J.-L. Sauvajol, A. Zahab, J.C. Meyer, S. Roth, N. Cordente, C. Amiens, B. Chaudret: Versatile synthesis of individual single-walled carbon nanotubes from nickel nanoparticles for the study of their physical properties, J. Phys. Chem. B 108, 17112–17118 (2004)Google Scholar
  121. 8.121
    Y. Kobayashi, H. Nakashima, D. Takagi, Y. Homma: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst, Thin Solid Films 464/465, 286–289 (2004)Google Scholar
  122. 8.122
    S. Casimirius, E. Flahaut, C. Laurent, C. Vieu, F. Carcenac, C. Laberty-Robert: Optimized microcontact printing process for the patterned growth of individual SWNTs, Microelectron. Eng. 73/74, 564–569 (2004)Google Scholar
  123. 8.123
    Y. Lei, K.S. Yeong, J.T.L. Thong, W.K. Chim: Large-scale ordered carbon nanotubes arrays initiated from highly ordered catalyst arrays on silicon substrates, Chem. Mater. 16, 2757–2761 (2004)Google Scholar
  124. 8.124
    Q. Ye, A.M. Cassel, H. Liu, K.J. Chao, J. Han, M. Meyyappan: Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications, Nano Lett. 4, 1301–1308 (2004)Google Scholar
  125. 8.125
    S. Fan, M. Chapline, N. Franklin, T. Tombler, A.M. Cassel, H. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999)Google Scholar
  126. 8.126
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumara, S. Iijima: Ware-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306, 1362–1364 (2004)Google Scholar
  127. 8.127
    Y. Fu, S. Chen, J. Bielecki, A. Matic, T. Wang, L.-L. Ye, J. Liu: Selective growth of double walled carbon nanotubes on gold films, Mater. Lett. 72, 78–80 (2012)Google Scholar
  128. 8.128
    A.M. Cassel, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, H. Dai: Directed growth of free-standing single-walled carbon nanotubes, J. Am. Chem. Soc. 121, 7975–7976 (1999)Google Scholar
  129. 8.129
    R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen: Continous production of aligned carbon nanotubes: A step closer to commercial realization, Chem. Phys. Lett. 303, 467–474 (1999)Google Scholar
  130. 8.130
    C.N.R. Rao, R. Sen, B.C. Satishkumar, A. Govindaraj: Large aligned carbon nanotubes bundles from ferrocene pyrolysis, Chem. Commun. (1998) doi: 10.1039/A802258E
  131. 8.131
    K.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, D.J. Kim: Effects of ammonia on the alignment of carbon nanotubes in metal-assisted chemical vapor deposition, J. Eur. Ceram. Soc. 21, 2095–2098 (2001)Google Scholar
  132. 8.132
    N.S. Kim, Y.T. Lee, J. Park, J.B. Han, Y.S. Choi, S.Y. Choi, J. Choo, G.H. Lee: Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines, J. Phys. Chem. B 107, 9249–9255 (2003)Google Scholar
  133. 8.133
    C. Emmeger, J.M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Züttel, L. Schlapbach: Synthesis of carbon nanotubes over Fe catalyst on aluminum and suggested growth mechanism, Carbon 41, 539–547 (2003)Google Scholar
  134. 8.134
    Q. Zhang, J. Huang, F. Wei, G. Xu, Y. Wang, W. Qian, D. Wang: Large scale production of carbon nanotubes arrays on the sphere surface from liquefied petroleum gas at low cost, Chin. Sci. Bull. 52, 2896–2902 (2007)Google Scholar
  135. 8.135
    X. Li, L. Zhang, X. Wang, I. Shimoyama, X. Sun, W.-S. Seo, H. Dai: Assembly of densely aligned single-walled carbon nanotubes from bulk materials Langmuir–Blodgett, J. Am. Chem. Soc. 129, 4890–4891 (2007)Google Scholar
  136. 8.136
    M. Kumar, Y. Ando: Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production, J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)Google Scholar
  137. 8.137
    J.-P. Tessonnier, D.S. Su: Recent progress on the growth mechanism of carbon nanotubes: A review, Chem. Sus. Chem. 4, 824–847 (2011)Google Scholar
  138. 8.138
    V. Jourdain, C. Bichara: Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, Carbon 58, 2–39 (2013)Google Scholar
  139. 8.139
    M. Endo, H.W. Kroto: Formation of carbon nanofibers, J. Phys. Chem. 96, 6941–6944 (1992)Google Scholar
  140. 8.140
    R.S. Wagner: VLS mechanisms of crystal growth. In: Whisker Technology, ed. by P.A. Levit (Wiley, New York 1970) pp. 47–72Google Scholar
  141. 8.141
    V. Jourdain, H. Kanzow, M. Castignolles, A. Loiseau, P. Bernier: Sequential catalytic growth of carbon nanotubes, Chem. Phys. Lett. 364, 27–33 (2002)Google Scholar
  142. 8.142
    H. Dai: Carbon nanotubes: Synthesis, integration, and properties, Acc. Chem. Res. 35, 1035–1044 (2002)Google Scholar
  143. 8.143
    Y. Saito, M. Okuda, N. Fujimoto, T. Yoshikawa, M. Tomita, T. Hayashi: Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation, Jpn. J. Appl. Phys. 33, L526–L529 (1994)Google Scholar
  144. 8.144
    J. Bernholc, C. Brabec, M. Buongiorno Nardelli, A. Malti, C. Roland, B.J. Yakobson: Theory of growth and mechanical properties of nanotubes, Appl. Phys. A 67, 39–46 (1998)Google Scholar
  145. 8.145
    F. Larouche, O. Smiljanic, X. Sun, B.L. Stanfield: Solutal Bénard–Marangoni instability as a growth mechanism for single-walled carbon nanotubes, Carbon 43, 986–993 (2005)Google Scholar
  146. 8.146
    K. Méténier, S. Bonnamy, F. Béguin, C. Journet, P. Bernier, L.M. de la Chapelle, O. Chauvet, S. Lefrant: Coalescence of single walled nanotubes and formation of multi-walled carbon nanotubes under high temperature treatments, Carbon 40, 1765–1773 (2002)Google Scholar
  147. 8.147
    P.G. Collins, P. Avouris: Nanotubes for electronics, Sci. Am. 283, 38–45 (2000)Google Scholar
  148. 8.148
    Q.-H. Yang, P.X. Hou, S. Bai, M.Z. Wang, H.M. Cheng: Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett. 345, 18–24 (2001)Google Scholar
  149. 8.149
    S. Inoue, N. Ichikuni, T. Suzuki, T. Uematsu, K. Kaneko: Capillary condensation of N2 on multiwall carbon nanotubes, J. Phys. Chem. 102, 4689–4692 (1998)Google Scholar
  150. 8.150
    M.E. Birch, T.A. Ruda-Eberenz, M. Chai, R. Andrews, R.L. Hatfield: Properties that influence the specific surface areas of carbon nanotubes and nanofibers, Ann. Occup. Hyg. 57, 1148–1166 (2013)Google Scholar
  151. 8.151
    M. Eswaramoorthy, R. Sen, C.N.R. Rao: A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors, Chem. Phys. Lett. 304, 207–210 (1999)Google Scholar
  152. 8.152
    A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset: Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39, 507–514 (2001)Google Scholar
  153. 8.153
    K.A. Williams, P.C. Eklund: Monte Carlo simulation of H2 physisorption in finite diameter carbon nanotube ropes, Chem. Phys. Lett. 320, 352–358 (2000)Google Scholar
  154. 8.154
    M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, M. Meyyappan: Pore structure of raw and purified HiPco single-walled carbon nanotubes, Chem. Phys. Lett. 365, 69–74 (2002)Google Scholar
  155. 8.155
    E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Béguin: Enhanced capacitance of carbon nanotubes through chemical activation, Chem. Phys. Lett. 336, 35–41 (2002)Google Scholar
  156. 8.156
    E. Raymundo-Pinhero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin: KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon 43, 786–795 (2005)Google Scholar
  157. 8.157
    R. Axet, R. Bacsa, B. Machado, P. Serp: Adsorption on and reactivity of carbon nanotubes and graphene. In: Handbook of Carbon Nano Materials, Vol. 5, ed. by F. D’Souza, K.M. Kadish (World Scientific, Singapore 2014) pp. 39–184Google Scholar
  158. 8.158
    Z. Chen, W. Thiel, A. Hirsch: Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: Dependence on the carbon-atom pyramidalization, Chem. Phys. Chem. 1, 93–97 (2003)Google Scholar
  159. 8.159
    K. Azizi, S. Majid Hashemianzadeh, S. Bahramifar: Density functional theory study of carbon monoxide adsorption on the inside and outside of the armchair single-walled carbon nanotubes, Curr. Appl. Phys. 11, 776–782 (2011)Google Scholar
  160. 8.160
    M. Muris, N. Dupont-Pavlosky, M. Bienfait, P. Zeppenfeld: Where are the molecules adsorbed on single-walled nanotubes?, Surf. Sci. 492, 67–74 (2001)Google Scholar
  161. 8.161
    R.B. Hallock, Y.H. Yang: Adsorption of helium and other gases to carbon nanotubes and nanotubes bundles, J. Low Temp. Phys. 134, 21–30 (2004)Google Scholar
  162. 8.162
    J. Zhu, Y. Wang, W. Li, F. Wei, Y. Yu: Density functional study of nitrogen adsorption in single-wall carbon nanotubes, Nanotechnology 18, 095707 (2007)Google Scholar
  163. 8.163
    J. Zhao, A. Buldum, J. Han, J.P. Lu: Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology 13, 195–200 (2002)Google Scholar
  164. 8.164
    C. Matranga, B. Bockrath: Hydrogen-bonded and physisorbed CO in single-walled carbon nanotubes bundles, J. Phys. Chem. B 109, 4853–4864 (2005)Google Scholar
  165. 8.165
    D.V. Kazachkin, Y. Nishimura, S. Irle, X. Feng, R. Vidic, E. Borguet: Temperature and pressure dependence of molecular adsorption on single wall carbon nanotubes and the existence of an adsorption/desorption pressure gap, Carbon 48, 1867–1875 (2010)Google Scholar
  166. 8.166
    A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba: Gas adsorption in the inside and outside of single-walled carbon nanotubes, Chem. Phys. Lett. 336, 205–211 (2001)Google Scholar
  167. 8.167
    C.M. Yang, H. Kanoh, K. Kaneko, M. Yudasaka, S. Iijima: Adsorption behaviors of HiPco single-walled carbon nanotubes aggregates for alcohol vapors, J. Phys. Chem. 106, 8994–8999 (2002)Google Scholar
  168. 8.168
    H. Ulbricht, G. Moos, T. Hertel: Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite, Phys. Rev. B 66, 075404–1–075404–7 (2002)Google Scholar
  169. 8.169
    H. Ulbricht, J. Kriebel, G. Moos, T. Hertel: Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles, Chem. Phys. Lett. 363, 252–260 (2002)Google Scholar
  170. 8.170
    J. Hilding, E.A. Grulke, S.B. Sinnott, D. Qian, R. Andrews, M. Jagtoyen: Sorption of butane on carbon multiwall nanotubes at room temperature, Langmuir 17, 7540–7544 (2001)Google Scholar
  171. 8.171
    A. Bilic, J.D. Gale: Chemisorption of molecular hydrogen on carbon nanotubes: A route to effective hydrogen storage?, J. Phys. Chem. C 112, 12568–12575 (2008)Google Scholar
  172. 8.172
    M. Hatami, A. Farmany, R. Sahraei: Physisorption and chemisorption of oxygen molecules on single- and multi-walled carbon nanotubes, Fuller. Nanot. Carbon Nanostruct. 22, 434–453 (2014)Google Scholar
  173. 8.173
    E. Durgun, S. Dag, V.M.K. Bagci, O. Gülseren, T. Yildirim, S. Ciraci: Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B 67, 201401 (2003)Google Scholar
  174. 8.174
    N. Park, D. Sung, S. Lim, S. Moon, S. Hong: Realistic adsorption geometries and binding affinities of metal nanoparticles onto the surface of carbon nanotubes, Appl. Phys. Lett. 94, 073105 (2009)Google Scholar
  175. 8.175
    J.-C. Charlier, X. Blase, S. Roche: Electronic and transport properties of carbon nanotubes, Rev. Mod. Phys. 79, 677–732 (2007)Google Scholar
  176. 8.176
    R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College, London 1998)zbMATHGoogle Scholar
  177. 8.177
    A. Charlier, E. McRae, R. Heyd, M.F. Charlier, D. Moretti: Classification for double-walled carbon nanotubes, Carbon 37, 1779–1783 (1999)Google Scholar
  178. 8.178
    A. Charlier, E. McRae, R. Heyd, M.F. Charlier: Metal semi-conductor transitions under uniaxial stress for single- and double-walled carbon nanotubes, J. Phys. Chem. Solids 62, 439–444 (2001)Google Scholar
  179. 8.179
    P. Delanay, H.J. Choi, J. Ihm, S.G. Louie, M.L. Cohen: Broken symmetry and pseudogaps in ropes of carbon nanotubes, Nature 391, 466–468 (1998)Google Scholar
  180. 8.180
    P. Puech, H. Hubel, D. Dunstan, R.R. Bacsa, C. Laurent, W.S. Bacsa: Discontinuous tangential stress in double wall carbon nanotubes, Phys. Rev. Lett. 93, 095506 (2004)Google Scholar
  181. 8.181
    P.M. Ajayan, M. Terrrones, A. de la Guardia, V. Hue, N. Grobert, B.Q. Wei, H. Lezec, G. Ramanath, T.W. Ebbesen: Nanotubes in a flash – ignition and reconstruction, Science 296, 705 (2002)Google Scholar
  182. 8.182
    H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62, 1255–1266 (1993)Google Scholar
  183. 8.183
    T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, 1066 (1997)Google Scholar
  184. 8.184
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361 (2002)Google Scholar
  185. 8.185
    M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen: Luttinger liquid behaviour in carbon nanotubes, Nature 397, 598–601 (1999)Google Scholar
  186. 8.186
    C.T. White, T.N. Todorov: Carbon nanotubes as long ballistic conductors, Nature 393, 240–242 (1998)Google Scholar
  187. 8.187
    S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Carbon nanotube quantum resistors, Science 280, 1744–1746 (1998)Google Scholar
  188. 8.188
    W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)Google Scholar
  189. 8.189
    L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.-P. Heremans, C.H. Olk, L. Stockman, C. van Haesendonck, Y. Buynseraeder: Quantum transport in a multi-walled carbon nanotube, Phys. Rev. Lett. 76, 479–482 (1996)Google Scholar
  190. 8.190
    K. Liu, S. Roth, G.S. Duesberg, G.T. Kim, D. Popa, K. Mukhopadhyay, R. Doome, J. B’Nagy: Antilocalization in multiwalled carbon nanotubes, Phys. Rev. B 61, 2375–2379 (2000)Google Scholar
  191. 8.191
    G. Fedorov, B. Lassagne, M. Sagnes, B. Raquet, J.M. Broto, F. Triozon, S. Roche, E. Flahaut: Gate-dependent magnetoresistance phenomena in carbon nanotubes, Phys. Rev. Lett. 94, 66801–66804 (2005)Google Scholar
  192. 8.192
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654–657 (2003)Google Scholar
  193. 8.193
    Y.A. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I.I. Khodos, Y.B. Gorbatov, V.T. Volkov, C. Journet, M. Burghard: Supercurrents through single-walled carbon nanotubes, Science 284, 1508–1511 (1999)Google Scholar
  194. 8.194
    B.W. Alphenaar, K. Tsukagoshi, M. Wagner: Magnetoresistance of ferromagnetically contacted carbon nanotubes, Phys. Eng. 10, 499–504 (2001)Google Scholar
  195. 8.195
    S. Berber, Y. Kwon, D. Tomanek: Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84, 4613–4616 (2000)Google Scholar
  196. 8.196
    M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelley, R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000)Google Scholar
  197. 8.197
    D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999)Google Scholar
  198. 8.198
    B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A 334, 173–178 (2002)Google Scholar
  199. 8.199
    R.P. Gao, Z.L. Wang, Z.G. Bai, W.A. De Heer, L.M. Dai, M. Gao: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Phys. Rev. Lett. 85, 622–625 (2000)Google Scholar
  200. 8.200
    M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)Google Scholar
  201. 8.201
    N. Yao, V. Lordie: Young’s modulus of single-wall carbon nanotubes, J. Appl. Phys. 84, 1939–1943 (1998)Google Scholar
  202. 8.202
    O. Lourie, H.D. Wagner: Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension, Appl. Phys. Lett. 73, 3527–3529 (1998)Google Scholar
  203. 8.203
    J. Zhang, M. Terrones, C.-R. Park, R. Mukherjee, M. Monthioux, N. Koratkar, Y.S. Kim, R. Hurt, E. Frackowiak, T. Enoki, Y. Chen, Y. Chen, A. Bianco: Carbon science in 2016: Status, challenges and perspectives, Carbon 98, 708–732 (2016)Google Scholar
  204. 8.204
    S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green: A simple chemical method of opening and filling carbon nanotubes, Nature 372, 159–162 (1994)Google Scholar
  205. 8.205
    M. Monthioux, J.-C. Charlier: Giving credit where credit is due: the Stone-(Thrower)-Wales designation revisited, Carbon 75, 1–4 (2014)Google Scholar
  206. 8.206
    S. Agnihotri, J.P. Mota, M. Rostam-Abadi, M.J. Rood: Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation, Langmuir 21, 896–904 (2005)Google Scholar
  207. 8.207
    M. Monthioux: Filling single-wall carbon nanotubes, Carbon 40, 1809–1823 (2002)Google Scholar
  208. 8.208
    M. Monthioux: Introduction to the meta-nanotube book. In: Carbon Meta-Nanotubes: Synthesis, Properties, Applications, ed. by M. Monthioux (Wiley-Blackwell, Chichester 2012) pp. 1–5Google Scholar
  209. 8.209
    M. Monthioux (Ed.): Carbon Meta-Nanotubes: Synthesis, Properties, Applications (Wiley-Blackwell, Chichester 2012)Google Scholar
  210. 8.210
    D. Golberg, M. Terrones: Heterogeneous Nanotubes (X*CNTs, X*BNNTs). In: Carbon Meta-Nanotubes: Synthesis, Properties, Applications, ed. by M. Monthioux (Wiley-Blackwell, Chichester 2012) pp. 323–409Google Scholar
  211. 8.211
    V. Krstic, C.P. Ewels, T. Wågberg, M.S. Ferreira, A.M. Janssens, O. Stéphan, M. Glerup: Indirect magnetic coupling in light-element-doped single-walled carbon nanotubes, ACS Nano 9, 5081–5086 (2010)Google Scholar
  212. 8.212
    W.K. Hsu, S.Y. Chu, E. Munoz-Picone, J.L. Boldu, S. Firth, P. Franchi, B.P. Roberts, A. Shilder, H. Terrones, N. Grobert, Y.Q. Zhu, M. Terrones, M.E. McHenry, H.W. Kroto, D.R.M. Walton: Metallic behaviour of boron-containing carbon nanotubes, Chem. Phys. Lett. 323, 572–579 (2000)Google Scholar
  213. 8.213
    R. Czerw, M. Terrones, J.C. Charlier, X. Blasé, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, D.L. Caroll: Identification of electron donor states, in N-doped carbon nanotubes, Nano Lett. 1, 457–460 (2001)Google Scholar
  214. 8.214
    O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin: Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683–1685 (1994)Google Scholar
  215. 8.215
    A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, G. Hug, C. Colliex, H. Pascard: Boron nitride nanotubes, Carbon 36, 743–752 (1998)Google Scholar
  216. 8.216
    C.C. Tang, L.M. de la Chapelle, P. Li, Y.M. Liu, H.Y. Dang, S.S. Fan: Catalytic growth of nanotube and nanobamboo structures of boron nitride, Chem. Phys. Lett. 342, 492–496 (2001)Google Scholar
  217. 8.217
    K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime: Synthesis of nanoparticles and nanotubes with well separated layers of boron-nitride and carbon, Science 278, 653–655 (1997)Google Scholar
  218. 8.218
    D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato: Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles, Carbon 38, 2017–2027 (2000)Google Scholar
  219. 8.219
    D.E. Gourari, M. Razafinimanana, M. Monthioux, R. Arenal, F. Valensi, S. Joulié, V. Serin: Synthesis of (B-C-N) nanomaterials by arc discharge using heterogeneous anodes, Plasma Sci. Technol. 18, 465–468 (2016)Google Scholar
  220. 8.220
    R.S. Lee, J. Gavillet, M.L. de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, F. Willaime: Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Phys. Rev. B 64, 121405.1–121405.4 (2001)Google Scholar
  221. 8.221
    M. Monthioux, E. Flahaut, J.-P. Cleuziou: Hybrid carbon nanotubes: Strategy, progress, and perspectives, J. Mater. Res. 21, 2774–2793 (2006)Google Scholar
  222. 8.222
    B. Burteaux, A. Claye, B.W. Smith, M. Monthioux, D.E. Luzzi, J.E. Fischer: Abundance of encapsulated C60 in single-wall carbon nanotubes, Chem. Phys. Lett. 310, 21–24 (1999)Google Scholar
  223. 8.223
    N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F. ter Waarbeek, J.J. de Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M.J. Otto, M. Pasquali: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity, Science 339, 182–186 (2013)Google Scholar
  224. 8.224
    D. Ugarte, A. Châtelain, W.A. de Heer: Nanocapillarity and chemistry in carbon nanotubes, Science 274, 1897–1899 (1996)Google Scholar
  225. 8.225
    J. Cook, J. Sloan, M.L.H. Green: Opening and filling carbon nanotubes, Fuller. Sci. Technol. 5, 695–704 (1997)Google Scholar
  226. 8.226
    P.M. Ajayan, S. Iijima: Capillarity-induced filling of carbon nanotubes, Nature 361, 333–334 (1993)Google Scholar
  227. 8.227
    P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura: Opening carbon nanotubes with oxygen and implications for filling, Nature 362, 522–525 (1993)Google Scholar
  228. 8.228
    S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loufty: Yttrium carbide in nanotubes, Nature 362, 503 (1993)Google Scholar
  229. 8.229
    S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loufty: Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters, Appl. Phys. Lett. 63, 2073–2075 (1993)Google Scholar
  230. 8.230
    R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoney: Single-crystal metals encapsulated in carbon nanoparticles, Science 259, 346–348 (1993)Google Scholar
  231. 8.231
    A. Loiseau, H. Pascard: Synthesis of long carbon nanotubes filled with Se, S, Sb, and Ge by the arc method, Chem. Phys. Lett. 256, 246–252 (1996)Google Scholar
  232. 8.232
    N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Loiseau, H. Pascard: Filling carbon nanotubes with metals by the arc discharge method: The key role of sulfur, Eur. Phys. J. B 4, 147–157 (1998)Google Scholar
  233. 8.233
    C.H. Kiang, J.S. Choi, T.T. Tran, A.D. Bacher: Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes, J. Phys. Chem. B 103, 7449–7551 (1999)Google Scholar
  234. 8.234
    Z.L. Zhang, B. Li, Z.J. Shi, Z.N. Gu, Z.Q. Xue, L.M. Peng: Filling of single-walled carbon nanotubes with silver, J. Mater. Res. 15, 2658–2661 (2000)Google Scholar
  235. 8.235
    A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Tao: Metal nanowires and intercalated metal layers in single-walled carbon nanotubes bundles, Chem. Mater. 12, 202–205 (2000)Google Scholar
  236. 8.236
    J. Mittal, M. Monthioux, H. Allouche: Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air, Chem. Phys. Lett. 339, 311–318 (2001)Google Scholar
  237. 8.237
    E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki: Capillarity and wetting of carbon nanotubes, Science 265, 1850–1852 (1994)Google Scholar
  238. 8.238
    E. Flahaut, J. Sloan, K.S. Coleman, V.C. Williams, S. Friedrichs, N. Hanson, M.L.H. Green: 1-D p-block halide crystals confined into single walled carbon nanotubes, Proc. Mater. Res. Soc. Symp. 633, A13.15.1–A13.15.6 (2001)Google Scholar
  239. 8.239
    J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green: Integral atomic layer architectures of 1-D crystals inserted into single walled carbon nanotubes, Chem. Commun. (2002) doi: 10.1039/B200537A
  240. 8.240
    J. Sloan, M.C. Novotny, S.R. Bailey, G. Brown, C. Xu, V.C. Williams, S. Friedrichs, E. Flahaut, R.L. Callender, A.P.E. York, K.S. Coleman, M.L.H. Green, R.E. Dunin-Borkowski, J.L. Hutchison: Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes, Chem. Phys. Lett. 329, 61–65 (2000)Google Scholar
  241. 8.241
    G. Brown, S.R. Bailey, J. Sloan, C. Xu, S. Friedrichs, E. Flahaut, K.S. Coleman, J.L. Hutchinson, R.E. Dunin-Borkowski, M.L.H. Green: Electron beam induced in situ clusterisation of 1-D ZrCl4 chains within single-walled carbon nanotubes, Chem. Commun. (2001) doi: 10.1039/B101261O
  242. 8.242
    J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, M.L.H. Green: Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun. (1999) doi: 10.1039/A901572H
  243. 8.243
    X. Fan, E.C. Dickey, P.C. Eklund, K.A. Williams, L. Grigorian, R. Buczko, S.T. Pantelides, S.J. Pennycook: Atomic arrangement of iodine atoms inside single-walled carbon nanotubes, Phys. Rev. Lett. 84, 4621–4624 (2000)Google Scholar
  244. 8.244
    G. Brown, S.R. Bailey, M. Novotny, R. Carter, E. Flahaut, K.S. Coleman, J.L. Hutchison, M.L.H. Green, J. Sloan: High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes, Appl. Phys. A 76, 457–462 (2003)Google Scholar
  245. 8.245
    J. Sloan, D.E. Luzzi, A.I. Kirkland, J.L. Hutchison, M.L.H. Green: Imaging and characterization of molecules and one-dimensional crystals formed within carbon nanotubes, Mater. Res. Soc. Bull. 29, 265–271 (2004)Google Scholar
  246. 8.246
    B.W. Smith, M. Monthioux, D.E. Luzzi: Encapsulated C60 in carbon nanotubes, Nature 396, 323–324 (1998)Google Scholar
  247. 8.247
    B.W. Smith, D.E. Luzzi, Y. Achiba: Tumbling atoms and evidence for charge transfer in La2@C80@SWNT, Chem. Phys. Lett. 331, 137–142 (2000)Google Scholar
  248. 8.248
    K. Suenaga, M. Tence, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima: Element-selective single atom imaging, Science 290, 2280–2282 (2000)Google Scholar
  249. 8.249
    D.E. Luzzi, B.W. Smith, R. Russo, B.C. Satishkumar, F. Stercel, N.R.C. Nemes: Encapsulation of metallofullerenes and metallocenes in carbon nanotubes. In: Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin, Heidelberg 2001) pp. 622–626Google Scholar
  250. 8.250
    J. Chancolon, F. Archaimbault, A. Pineau, S. Bonnamy: Confinement of selenium into carbon nanotubes, Fuller. Nanotub. Carbon Nanostruct. 13, 189–194 (2005)Google Scholar
  251. 8.251
    L. Guan, K. Suenaga, Z. Shi, Z. Gu, S. Iijima: Polymorphic structures of iodine and their phase transition in confined nanospace, Nano Lett. 7, 1532–1535 (2007)Google Scholar
  252. 8.252
    B.W. Smith, D.E. Luzzi: Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis, Chem. Phys. Lett. 321, 169–174 (2000)Google Scholar
  253. 8.253
    K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima: One-dimensional metallo-fullerene crystal generated inside single-walled carbon nanotubes, Phys. Rev. Lett. 85, 5384–5387 (2000)Google Scholar
  254. 8.254
    Y.P. Sun, K. Fu, Y. Lin, W. Huang: Functionalized carbon nanotubes: Properties and applications, Acc. Chem. Res. 35, 1095–1104 (2002)Google Scholar
  255. 8.255
    S. Campidelli, S.S. Wong, M. Prato: Functionalized Carbon nanotubes (X-CNTs). In: Carbon Meta-Nanotubes: Synthesis, Properties, Applications, ed. by M. Monthioux (Wiley-Blackwell, Chichester 2012) pp. 113–161Google Scholar
  256. 8.256
    S. Osswald, E. Flahaut, H. Ye, Y. Gogotsi: Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation, Chem. Phys. Lett. 402, 422–427 (2005)Google Scholar
  257. 8.257
    W. Xia, C. Jin, S. Kundu, M. Muhler: A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor, Carbon 47, 919–922 (2009)Google Scholar
  258. 8.258
    D.C. Vennerberg, R.L. Quirino, Y. Chang, M.R. Kessler: Oxidation behavior of multiwalled carbon nanotubes fluidized with ozone, Appl. Mat. Interfaces 6, 1835–1842 (2014)Google Scholar
  259. 8.259
    P. Lassègue, N. Coppey, L. Noé, M. Monthioux, B. Caussat: Decoration of carbon nanotubes by semiconducting or metallic nanoparticles using fluidized bed chemical vapor deposition, Kona Powder Part. J. 33, 322–332 (2016)Google Scholar
  260. 8.260
    J. Chen, M.A. Hamon, M. Hui, C. Yongsheng, A.M. Rao, P.C. Eklund, R.C. Haddon: Solution properties of single-walled carbon nanotubes, Science 282, 95–98 (1998)Google Scholar
  261. 8.261
    D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato: Chemistry of Carbon Nanotubes, Chem. Rev. 106, 1105–1136 (2006)Google Scholar
  262. 8.262
    J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, R.C. Haddon: Dissolution of full-length single-walled carbon nanotubes, J. Phys. Chem. B 105, 2525–2528 (2001)Google Scholar
  263. 8.263
    K. Nagaraju, R. Reddy, N. Reddy: A review on protein functionalized carbon nanotubes, J. Appl. Biomater. Funct. Mater. 13, e301–e312 (2015)Google Scholar
  264. 8.264
    S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G.R.K. Naidu, H.-Y. Lee, T. Kawai: A review of DNA functionalized/grafted carbon nanotubes and their characterization, Sens. Actuat. B 122, 672–682 (2007)Google Scholar
  265. 8.265
    Y.P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L.A. Riddle, Y.J. Yu, D.L. Carroll: Soluble dendron-functionalized carbon nanotubes: Preparation, characterization, and properties, Chem. Mater. 13, 2864–2869 (2001)Google Scholar
  266. 8.266
    K. Fu, W. Huang, Y. Lin, L.A. Riddle, D.L. Carroll, Y.P. Sun: Defunctionalization of functionalized carbon nanotubes, Nano Lett. 1, 439–441 (2001)Google Scholar
  267. 8.267
    P.W. Chiu, G.S. Duesberg, U. Dettlaff-Weglikowska, S. Roth: Interconnection of carbon nanotubes by chemical functionalization, Appl. Phys. Lett. 80, 3811–3813 (2002)Google Scholar
  268. 8.268
    M. Tunckol, J. Durand, P. Serp: Carbon nanomaterial–ionic liquid hybrids, Carbon 50, 4303–4334 (2012)Google Scholar
  269. 8.269
    A. Di Crescenzo, V. Ettorre, A. Fontana: Non-covalent and reversible functionalization of carbon nanotubes, Beilstein J. Nanotechnol. 5, 1675–1690 (2014)Google Scholar
  270. 8.270
    E.T. Mickelson, C.B. Huffman, A.G. Rinzler, R.E. Smalley, R.H. Hauge, J.L. Margrave: Fluorination of single-wall carbon nanotubes, Chem. Phys. Lett. 296, 188–194 (1998)Google Scholar
  271. 8.271
    V.N. Khabashesku, W.E. Billups, J.L. Margrave: Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions, Acc. Chem. Res. 35, 1087–1095 (2002)Google Scholar
  272. 8.272
    P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites: Part A 41, 1345–1367 (2010)Google Scholar
  273. 8.273
    L. Meng, C. Fu, Q. Lu: Advanced technology for functionalization of carbon nanotubes, Progr. Nat. Sci. 19, 801–810 (2009)Google Scholar
  274. 8.274
    J. Han, C. Gao: Functionalization of carbon nanotubes and other nanocarbons by azide chemistry, Nano-Micro Lett. 2, 213–226 (2010)Google Scholar
  275. 8.275
    R.R. Bacsa, P. Serp: Decorated (coated) nanotubes. In: Carbon Meta-Nanotubes: Synthesis, Properties, Applications, ed. by M. Monthioux (Wiley-Blackwell, Chichester 2012) pp. 163–221Google Scholar
  276. 8.276
    K.N. Chaudhari, S. Chaudhari, J.S. Yu: Synthesis and supercapacitor performance of Au-nanoparticle decorated MWCNT, J. Electroanal. Chem. 761, 98–105 (2016)Google Scholar
  277. 8.277
    G.G. Wildgoose, C.E. Banks, R.G. Compton: Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications, Small 2, 182–193 (2006)Google Scholar
  278. 8.278
    Q. Kuang, S.F. Li, Z.X. Xie, S.C. Lin, X.H. Zhang, S.Y. Xie, R.B. Huang, L.S. Zheng: Controllable fabrication of SnO2-coated multiwalled carbon nanotubes by chemical vapour deposition, Carbon 44, 1166–1172 (2006)Google Scholar
  279. 8.279
    A. Goulas, J.R. van Ommen: Scalable production of nanostructured particles using atomic layer deposition, Kona Powder Part. J. 31, 234–246 (2014)Google Scholar
  280. 8.280
    S. Banerjee, K. Dasgupta, A. Kumar, P. Ruz, B. Vishwanadh, J.B. Joshi, V. Sudarsan: Comparative evaluation of hydrogen storage behavior of Pd doped carbon nanotubes prepared by wet impregnation and polyol methods, Int. J. Hydrogen En. 40(8), 3268–3276 (2015)Google Scholar
  281. 8.281
    K. Fu, O. Yildiz, H. Bhanushali, Y. Wang, K. Stano, L. Xue, X. Zhang, P.D. Bradford: Aligned carbon nanotube-Silicon sheets: A novel nano-architecture for flexible lithium ion battery electrodes, Adv. Mater. 25, 5109–5114 (2013)Google Scholar
  282. 8.282
    F. Mendoza, D.M. Hernandez, V. Makarov, E. Febus, B.R. Weiner, G. Morell: Room temperature gas sensor based on tin dioxide-carbon nanotubes composite films, Sensors Actuat. B 190, 227–233 (2014)Google Scholar
  283. 8.283
    M. Feng, R.J. Puddephatt: Chemical vapour deposition of nickel-group metals on multiwall carbon nanotubes, Can. J. Chem. 85, 645–650 (2007)Google Scholar
  284. 8.284
    N. Coppey, L. Noé, M. Monthioux, B. Caussat: Decorated carbon nanotubes by silicon deposition in fluidized bed for li-ion battery anodes, Chem. Eng. Res. Design 91, 2491–2496 (2013)Google Scholar
  285. 8.285
    S.R. Bakshi, D. Lahiri, A. Agarwal: Carbon nanotube reinforced metal matrix composites - A review, Int. Mater. Rev. 55, 41–64 (2010)Google Scholar
  286. 8.286
    N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner: Spark plasma sintering of metals and metal matrix nanocomposites: A review, J. Nanomater. 2012, 983470 (2012)Google Scholar
  287. 8.287
    S.C. Tjong: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R-Rep. 74, 281–350 (2013)Google Scholar
  288. 8.288
    C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma, D.H. Wu: Fabrication of aluminum-carbon nanotube composites and their electrical properties, Carbon 37, 855–858 (1999)Google Scholar
  289. 8.289
    T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito: Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res. 13, 2445–2449 (1998)Google Scholar
  290. 8.290
    H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki: Investigation of carbon nanotube reinforced aluminum matrix composite materials, Compos. Sci. Technol. 70, 546–550 (2010)Google Scholar
  291. 8.291
    H.J. Choi, J.Y. Shin, B.H. Min, J.S. Park, D.H. Bae: Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites, J. Mater. Res. 24, 2610–2616 (2009)Google Scholar
  292. 8.292
    C.F. Deng, Y.X. Ma, P. Zhang, X.X. Zhang, D.Z. Wang: Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes, Mater. Lett. 62, 2301–2303 (2008)Google Scholar
  293. 8.293
    K.T. Kim, S.I. Cha, S.H. Hong, S.H. Hong: Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites, Mater. Sci. Eng. A 430, 27–33 (2006)Google Scholar
  294. 8.294
    W.M. Daoush, B.K. Lim, C.B. Mo, D.H. Nam, S.H. Hong: Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process, Mater. Sci. Eng. A 513–514, 247–253 (2009)Google Scholar
  295. 8.295
    C. Arnaud, F. Lecouturier, D. Mesguich, N. Ferreira, G. Chevallier, C. Estournès, A. Weibel, C. Laurent: High strength-high conductivity double-walled carbon nanotube - Copper composite wires, Carbon 96, 212–215 (2016)Google Scholar
  296. 8.296
    C. Guiderdoni, E. Pavlenko, V. Turq, A. Weibel, P. Puech, C. Estournès, A. Peigney, W. Bacsa, C. Laurent: The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties, Carbon 58, 185–197 (2013)Google Scholar
  297. 8.297
    C.S. Goh, J. Wei, L.C. Lee, M. Gupta: Simultaneous enhancement in strength and ductility reinforcing magnesium with carbon nanotubes, Mater. Sci. Eng. A 423, 153–156 (2006)Google Scholar
  298. 8.298
    F.J. Sun, C.S. Shi, K.Y. Rhee, N.Q. Zhao: In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites, J. Alloys Compounds 551, 496–501 (2013)Google Scholar
  299. 8.299
    T. Kuzumaki, O. Ujiie, H. Ichinose, K. Ito: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite, Adv. Eng. Mater. 2, 416–418 (2000)Google Scholar
  300. 8.300
    K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, B. Fugetsu: Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes, Compos. Sci. Technol. 69, 1077–1081 (2009)Google Scholar
  301. 8.301
    E. Carreno-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, L. Forro, R. Schaller: Carbon nanotube/magnesium composites, Phys. Status Solidi (a) 201, R53–R55 (2004)Google Scholar
  302. 8.302
    Q. Ngo, B.A. Cruden, A.M. Cassell, M.D. Walker, Q. Ye, J.E. Koehne, M. Meyyappan, J. Li, C.Y. Yang: Thermal conductivity of carbon nanotube composite films, Mater. Res. Soc. Symp. Proc. 812, 179–184 (2004)Google Scholar
  303. 8.303
    X.H. Chen, C.S. Chen, H.N. Xiao, F.Q. Cheng, G. Zhang, G.J. Yi: Corrosion behavior of carbon nanotubes-Ni composite coating, Surf. Coat. Technol. 191, 351–356 (2005)Google Scholar
  304. 8.304
    X.H. Chen, C.S. Chen, H.N. Xiao, H.B. Liu, L.P. Zhou, S.L. Li, G. Zhang: Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits, Tribol. Int. 39, 22–28 (2006)Google Scholar
  305. 8.305
    A. Peigney, A. Weibel, C. Laurent: Carbon nanotubes in ceramic-matrix nanocomposites. In: Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (American Scientific, Valencia 2011) pp. 179–196Google Scholar
  306. 8.306
    J. Cho, A.R. Boccaccini, M.S.P. Shaffer: Ceramic matrix composites containing carbon nanotubes, J. Mater. Sci. 44, 1934–1951 (2009)Google Scholar
  307. 8.307
    E. Zapata-Solvas, D. Gómez-García, A. Domínguez-Rodríguez: Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites, J. Eur. Ceram. Soc. 32, 3001–3020 (2012)Google Scholar
  308. 8.308
    S.I. Cha, K.T. Kim, K.H. Lee, C.B. Mo, S.H. Hong: Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process, Scr. Mater. 53, 793–797 (2005)Google Scholar
  309. 8.309
    M. Estili, A. Kawasaki, Y. Sakka: Highly concentrated 3-D macrostructure of individual carbon nanotubes in a ceramic environment, Adv. Mater. 24, 4322–4326 (2012)Google Scholar
  310. 8.310
    X. Wang, N.P. Padture, H. Tanaka: Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites, Nat. Mater. 3, 539–544 (2004)Google Scholar
  311. 8.311
    W.A. Curtin, B.W. Sheldon: CNT-reinforced ceramics and metals, Mater. Today 7, 44–49 (2004)Google Scholar
  312. 8.312
    Z. Xia, L. Riester, W.A. Curtin, H. Li, B.W. Sheldon, J. Liang, B. Chang, J.M. Xu: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites, Acta Mater. 52, 931–944 (2004)Google Scholar
  313. 8.313
    M. Estili, Y. Sakka: Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites, Sci. Technol. Adv. Mater. 15, 064902 (2014)Google Scholar
  314. 8.314
    A. Peigney, F. Legorreta Garcia, C. Estournès, A. Weibel, C. Laurent: Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites, Carbon 48, 1952–1960 (2010)Google Scholar
  315. 8.315
    D.S. Lim, J.W. An, H.J. Lee: Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites, Wear 252, 512–517 (2002)Google Scholar
  316. 8.316
    D.-S. Lim, D.-H. You, H.-J. Choi, S.-H. Lim, H. Jang: Effect of CNT distribution on tribological behavior of alumina-CNT composites, Wear 259, 539–544 (2005)Google Scholar
  317. 8.317
    Z.H. Xia, J. Lou, W.A. Curtin: A multiscale experiment on the tribological of aligned carbon nanotube/ceramic composites, Scr. Mater. 58, 223–226 (2008)Google Scholar
  318. 8.318
    A. Kasperski, A. Weibel, D. Alkattan, C. Estournès, V. Turq, C. Laurent, A. Peigney: Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO2 composites prepared by spark plasma sintering, Scr. Mater. 69, 338–341 (2013)Google Scholar
  319. 8.319
    G.-D. Zhan, J.D. Kuntz, H. Wang, C.-M. Wang, A.K. Mukherjee: Anisotropic thermal properties of single-wall-carbon-nanotube-reinforced nanoceramics, Philos. Mag. Lett. 84, 419–423 (2004)Google Scholar
  320. 8.320
    Q. Huang, L. Gao, Y. Liu, J. Sun: Sintering and thermal properties of multiwalled carbon nanotube-BaTiO3 composites, J. Mater. Chem. 15, 1995–2001 (2005)Google Scholar
  321. 8.321
    G.-D. Zhan, J.D. Kuntz, J.E. Garay, A.K. Mukherjee: Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes, Appl. Phys. Lett. 83, 1228–1230 (2003)Google Scholar
  322. 8.322
    S. Rul, F. Lefevre-Schlick, E. Capria, C. Laurent, A. Peigney: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, Acta Mater. 52, 1061–1067 (2004)Google Scholar
  323. 8.323
    S.-L. Shi, J. Liang: Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites, J. Appl. Phys. 101, 023708–5 (2007)Google Scholar
  324. 8.324
    M.J. de Andrade, A. Weibel, C. Laurent, S. Roth, C.P. Bergmann, C. Estournès, A. Peigney: Electrical conductive double-walled carbon nanotubes-silica glass nanocomposites prepared by the sol-gel process and spark plasma sintering, Scr. Mater. 61, 988–991 (2009)Google Scholar
  325. 8.325
    A. Peigney, E. Flahaut, C. Laurent, F. Chastel, A. Rousset: Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion, Chem. Phys. Lett. 352, 20–25 (2002)Google Scholar
  326. 8.326
    P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science 265, 1212–1214 (1994)Google Scholar
  327. 8.327
    Z. Spitalskya, D. Tasisb, K. Papagelisb, C. Galiotis: Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35, 357–401 (2010)Google Scholar
  328. 8.328
    R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey: Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett. 330, 219–225 (2000)Google Scholar
  329. 8.329
    L.S. Schadler, S.C. Giannaris, P.M. Ajayan: Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett. 73, 3842–3844 (1998)Google Scholar
  330. 8.330
    S.J.V. Frankland, A. Caglar, D.W. Brenner, M. Griebel: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces, J. Phys. Chem. B 106, 3046–3048 (2002)Google Scholar
  331. 8.331
    H.D. Wagner: Nanotube-polymer adhesion: A mechanics approach, Chem. Phys. Lett. 361, 57–61 (2002)Google Scholar
  332. 8.332
    P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio: Single-walled carbon nanotube-polymer composites: Strength and weakness, Adv. Mater. 12, 750–753 (2000)Google Scholar
  333. 8.333
    X. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young: Surfactant-assisted processing of carbon nanotube/polymer composites, Chem. Mater. 12, 1049–1052 (2000)Google Scholar
  334. 8.334
    E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou: Carbon nanotube/carbon fiber hybrid multiscale composites, J. Appl. Phys. 91, 6034–6037 (2002)Google Scholar
  335. 8.335
    F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler, K. Schulte: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Technol. 64, 2363–2371 (2004)Google Scholar
  336. 8.336
    F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study, Compos. Sci. Tech. 65, 2300–2313 (2005)Google Scholar
  337. 8.337
    H. Rajoria, N. Jalili: Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites, Compos. Sci. Tech. 65, 2079–2093 (2005)Google Scholar
  338. 8.338
    A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman: Super-tough carbon-nanotube fibers, Nature 23, 703 (2003)Google Scholar
  339. 8.339
    P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, C. Zakri: Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment, Nano Lett. 5, 2212–2215 (2005)Google Scholar
  340. 8.340
    B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin: Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331–1334 (2000)Google Scholar
  341. 8.341
    B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier: Improved structure and properties of single-wall carbon nanotube spun fibers, Appl. Phys. Lett. 11, 1210–1212 (2002)Google Scholar
  342. 8.342
    G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park, W.R. Lee: A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, J. Ind. Eng. Chem. 21, 11–25 (2015)Google Scholar
  343. 8.343
    J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Winlde: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer 44, 5893–5899 (2003)Google Scholar
  344. 8.344
    Z. Hana, A. Fina: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Prog. Polym. Sci. 36, 914–944 (2011)Google Scholar
  345. 8.345
    M.S.P. Shaffer, A.H. Windle: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater. 11, 937–941 (1999)Google Scholar
  346. 8.346
    L. Jin, C. Bower, O. Zhou: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching, Appl. Phys. Lett. 73, 1197–1199 (1998)Google Scholar
  347. 8.347
    H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett. 72, 188–190 (1998)Google Scholar
  348. 8.348
    H.D. Wagner, O. Lourie, X.F. Zhou: Macrofragmentation and microfragmentation phenomena in composite materials, Compos. Part A 30, 59–66 (1998)Google Scholar
  349. 8.349
    J.R. Wood, Q. Zhao, H.D. Wagner: Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy, Compos. Part A 32, 391–399 (2001)Google Scholar
  350. 8.350
    Q. Zhao, J.R. Wood, H.D. Wagner: Using carbon nanotubes to detect polymer transitions, J. Polym. Sci. B 39, 1492–1495 (2001)Google Scholar
  351. 8.351
    M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinesz, J.M. Benoit, J. Schreiber, O. Chauvet: Synthesis of a new polyaniline/nanotube composite: In-situ polymerisation and charge transfer through site-selective interaction, Chem. Commun. (2001) doi: 10.1039/B104009J
  352. 8.352
    D. Qian, E.C. Dickey, R. Andrews, T. Rantell: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett. 76, 2868–2870 (2000)Google Scholar
  353. 8.353
    V. Datsyuk, C. Guerret-Piecourt, S. Dagreou, L. Billon, J.-C. Dupin, E. Flahaut, A. Peigney, C. Laurent: Double walled carbon nanotube/polymer composites via in-situ nitroxide mediated polymerisation of amphiphilic block copolymers, Carbon 43, 873–876 (2005)Google Scholar
  354. 8.354
    R. Blake, Y.K. Gun’ko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites, J. Am. Chem. Soc. 126, 10226–10227 (2004)Google Scholar
  355. 8.355
    T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer 45, 4227–4239 (2004)Google Scholar
  356. 8.356
    C. Wei, D. Srivastava, K. Cho: Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites, preprint arXiv:cond-mat/0203349, 1–11 (2002)Google Scholar
  357. 8.357
    J.C. Grunlan, M.V. Bannon, A.R. Mehrabi: Latex-based, single-walled nanotube composites: Processing and electrical conductivity, Polym. Prepr. 45, 154–155 (2004)Google Scholar
  358. 8.358
    J.C. Grunlan, A.R. Mehrabi, M.V. Bannon, J.L. Bahr: Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold, Adv. Mater. 16, 150–153 (2004)Google Scholar
  359. 8.359
    C. Pirlot, I. Willems, A. Fonseca, J.B. Nagy, J. Delhalle: Preparation and characterization of carbon nanotube/polyacrylonitrile composites, Adv. Eng. Mater. 4, 109–114 (2002)Google Scholar
  360. 8.360
    H. Lam, H. Ye, Y. Gogotsi, F. Ko: Structure and properties of electrospun single-walled carbon nanotubes reinforced nanocomposite fibrils by co-electrospinning, Polym. Prepr. 45, 124–125 (2004)Google Scholar
  361. 8.361
    L. Cao, H. Chen, M. Wang, J. Sun, X. Zhang, F. Kong: Photoconductivity study of modified carbon nanotube/oxotitanium phthalocyanine composites, J. Phys. Chem. B 106, 8971–8975 (2002)Google Scholar
  362. 8.362
    I. Musa, M. Baxendale, G.A.J. Amaratunga, W. Eccleston: Properties of regular poly(3-octylthiophene)/multi-wall carbon nanotube composites, Synth. Met. 102, 1250 (1999)Google Scholar
  363. 8.363
    E. Kymakis, I. Alexandou, G.A.J. Amaratunga: Single-walled carbon nanotube-polymer composites: Electrical, optical and structural investigation, Synth. Met. 127, 59–62 (2002)Google Scholar
  364. 8.364
    K. Yoshino, H. Kajii, H. Araki, T. Sonoda, H. Take, S. Lee: Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites, Fuller. Sci. Technol. 7, 695–711 (1999)Google Scholar
  365. 8.365
    S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A.B. Dalton, A.P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes. A novel material for molecular optoelectronics, Adv. Mater. 10, 1091–1093 (1998)Google Scholar
  366. 8.366
    P. Fournet, D.F. O’Brien, J.N. Coleman, H.H. Horhold, W.J. Blau: A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes, Synth. Met. 121, 1683–1684 (2001)Google Scholar
  367. 8.367
    H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J. Ballato, A.E. Strevens, D. O’Brien, W.J. Blau: Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly(m-phenylene-vinylene-co-2,5-dioctoxy-p-phenylene vinylene), Appl. Phys. Lett. 77, 1393–1395 (2000)Google Scholar
  368. 8.368
    H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J.W. Park, J.H. Lee: Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: The role of carbon nanotubes in a hole conducting polymer, Synth. Met. 116, 369–372 (2001)Google Scholar
  369. 8.369
    H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend: Composites of carbon nanotubes and conjugated polymers for photovoltaic devices, Adv. Mater. 11, 1281–1285 (1999)Google Scholar
  370. 8.370
    P. Poulin, B. Vigolo, P. Launois: Films and fibers of oriented single wall nanotubes, Carbon 40, 1741–1749 (2002)Google Scholar
  371. 8.371
    K. Jiang, Q. Li, S. Fan: Spinning continuous carbon nanotube yarn, Nature 419, 801 (2002)Google Scholar
  372. 8.372
    M. Zhang, K.R. Atkinson, R.H. Baughman: Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306, 1356–1361 (2004)Google Scholar
  373. 8.373
    J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, M. Holzinger: Production of pure nanotube fibers using a modified wet-spinning method, Carbon 43, 2397–2400 (2005)Google Scholar
  374. 8.374
    B. Maruyama, K. Alam: Carbon nanotubes and nanofibers in composite materials, SAMPE J. 38, 59–70 (2002)Google Scholar
  375. 8.375
    M. Monthioux: Applications of carbon nanotubes. In: Strained Hydrocarbons, ed. by H. Dodziuk (Wiley, Weinheim 2009) pp. 356–373Google Scholar
  376. 8.376
    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart: Carbon nanotubes: Present and future commercial applications, Science 339, 535–539 (2013)Google Scholar
  377. 8.377
    H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley: Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147–150 (1996)Google Scholar
  378. 8.378
    J.H. Hafner, C.L. Cheung, A.T. Wooley, C.M. Lieber: Structural and functional imaging with carbon nanotube AFM probes, Progr. Biophys. Mol. Biol. 77, 73–110 (2001)Google Scholar
  379. 8.379
    S.S. Wong, E. Joselevich, A.T. Woodley, C.L. Cheung, C.M. Lieber: Covalently functionalized nanotubes as nanometre-size probes in chemistry and biology, Nature 394, 52–55 (1998)Google Scholar
  380. 8.380
    C.L. Cheung, J.H. Hafner, C.M. Lieber: Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proc. Natl. Acad. Sci. USA 97, 3809–3813 (2000)Google Scholar
  381. 8.381
    W.A. de Heer, A. Châtelain, D. Ugarte: A carbon nanotube field-emission electron source, Science 270, 1179–1180 (1995)Google Scholar
  382. 8.382
    J.M. Bonard, J.P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, A. Chatelâin: Field emission from single-wall carbon nanotube films, Appl. Phys. Lett. 73, 918–920 (1998)Google Scholar
  383. 8.383
    W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin: Large curent density from carbon nanotube field emitters, Appl. Phys. Lett. 75, 873–875 (1999)Google Scholar
  384. 8.384
    Y. Saito, R. Mizushima, T. Tanaka, K. Tohji, K. Uchida, M. Yumura, S. Uemura: Synthesis, structure, and field emission of carbon nanotubes, Fuller. Sci. Technol. 7, 653–664 (1999)Google Scholar
  385. 8.385
    F. Houdellier, A. Masseboeuf, M. Monthioux, M.J. Hÿtch: New carbon cone nanotip for use in a highly coherent cold field emission electron microscope, Carbon 50, 2037–2044 (2012)Google Scholar
  386. 8.386
    C. Peltola: Weeks, I.A. Levitsky, D.A. Britz, P. Glatkowski, M. Trottier, T. Huang: Carbon-nanotube transparent electrodes for flexible displays, Inf. Disp. 23, 20–23 (2007)Google Scholar
  387. 8.387
    C.M. Trottier, P. Glatkowski, P. Wallis, J. Luo: Properties and characterization of carbon-nanotube-based transparent conductive coating, J. Soc. Inf. Disp. 13, 759–763 (2005)Google Scholar
  388. 8.388
    D.S. Hecht, L.B. Hu, G. Irvin: Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater. 23, 1482–1513 (2011)Google Scholar
  389. 8.389
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289, 94–97 (2000)Google Scholar
  390. 8.390
    T. Hawkins, S. Drozdz: Cathodic nanocoating technology for corrosion control and steel structures. In: Waterbone Symp., Proc. Thirty-Ninth Ann. Int. Waterborne, High Solids, Powder Coat. Symp., ed. by J.W. Rawlins, R.F. Storey (DEStech, Lancaster 2012) pp. 100–105Google Scholar
  391. 8.391
    J.R. Dahn: Phase diagram of LixC6, Phys. Rev. B 44, 9170–9177 (1991)Google Scholar
  392. 8.392
    C. de las Casas, W. Li: A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources 208, 74–85 (2012)Google Scholar
  393. 8.393
    G. Maurin, F. Henn: Electrochemical insertion of lithium in carbon nanotubes. In: Encylopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (American Scientific, California 2003) pp. 773–792Google Scholar
  394. 8.394
    B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle: Carbon nanotubes for lithium ion batteries, Energ. Environ. Sci. 2, 638–654 (2009)Google Scholar
  395. 8.395
    L. Dai, D.W. Chang, J.-B. Baek, W. Lu: Carbon nanomaterials for advanced energy conversion and storage, Small 8, 1130–1166 (2012)Google Scholar
  396. 8.396
    M. Endo, T. Hayashi, Y.-A. Kim: Large-scale production of carbon nanotubes and their applications, Pure Appl. Chem. 78, 1703–1713 (2006)Google Scholar
  397. 8.397
    T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses: Recent progress in carbon nanotube-based gas sensors, Nanotechnology 19, 332001 (2008)Google Scholar
  398. 8.398
    Y. Wang, J.T.W. Yeow: A Review of carbon nanotubes-based gas sensors, J. Sensors 2009, 493904 (2009)Google Scholar
  399. 8.399
    P. Bondavalli, P. Legagneux, D. Pribat: Carbon nanotubes based transistors as gas sensors: State of the art and critical review, Sensors Actuat. B 140, 304–318 (2009)Google Scholar
  400. 8.400
    M. Meyyappan: Carbon nanotube-based chemical sensors, Small 12, 2118–2129 (2016)Google Scholar
  401. 8.401
    D.W.H. Fam, A. Palaniappana, A.I.Y. Tok, B. Liedberga, S.M. Moochhal: A review on technological aspects influencing commercialization of carbon nanotube sensors, Sensors Actuat. B 157, 1–7 (2011)Google Scholar
  402. 8.402
    P. Serp: Carbon. In: Comprehensive Inorganic Chemistry II, Vol. 7, ed. by J. Reedijk, K. Poeppelmeier (Elsevier, Oxford 2013) pp. 323–369Google Scholar
  403. 8.403
    J.M. Planeix, N. Coustel, B. Coq, B. Botrons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan: Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116, 7935–7936 (1994)Google Scholar
  404. 8.404
    P. Serp, B. Machado (Eds.): Nanostructured Carbon Materials for Catalysis, RSC Catalysis (Cambridge, Cambridge 2015)Google Scholar
  405. 8.405
    E. Antolini: Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B 88, 1–24 (2009)Google Scholar
  406. 8.406
    S. Mukherjee, A. Bates, S.C. Lee, D.-H. Lee, S. Park: A Review of the application of CNTs in PEM fuel cells, Int. J. Green Energ. 12, 787–809 (2015)Google Scholar
  407. 8.407
    R. Hurt, M. Monthioux, A. Kane: Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue, Carbon 44(6), 1028–1033 (2006)Google Scholar
  408. 8.408
    C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M.L.H. Green, R.B. Sim: Complement activation and protein adsorption by carbon nanotubes, Mol. Immun. 43, 193–201 (2006)Google Scholar
  409. 8.409
    C. Salvador-Morales, P. Townsend, E. Flahaut, C. Vénien-Bryan, A. Vlandas, M.L.H. Green, R.B. Sim: Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defence mechanisms, Carbon 45, 607–617 (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Marc Monthioux
    • 1
  • Philippe Serp
    • 2
  • Brigitte Caussat
    • 3
  • Emmanuel Flahaut
    • 4
  • Manitra Razafinimanana
    • 5
  • Flavien Valensi
    • 6
  • Christophe Laurent
    • 7
  • Alain Peigney
    • 8
  • David Mesguich
    • 4
  • Alicia Weibel
    • 4
  • Wolfgang Bacsa
    • 9
  • Jean-Marc Broto
    • 10
  1. 1.Centre d‘Elaboration de Matériaux et d‘Etudes Structurales (CEMES), UPR #8011Centre National de la Recherche Scientifique, Université de ToulouseToulouseFrance
  2. 2.Laboratoire de Chimie de Coordination (LCC), UPR #8241Centre National de la Recherche Scientifique, Université de Toulouse, Institut National Polytechnique de ToulouseToulouseFrance
  3. 3.Laboratoire de Génie Chimique (LGC), UMR #5503Centre National de la Recherche Scientifique, Université de Toulouse, Institut National Polytechnique de ToulouseToulouseFrance
  4. 4.Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), UMR #5085Centre National de la Recherche Scientifique, Université de Toulouse, Institut National Polytechnique de ToulouseToulouseFrance
  5. 5.Laboratoire des Plasmas et de Conversion de l’Energie (LAPLACE), UMR #5002Centre National de la Recherche Scientifique, Université de Toulouse, Institut National Polytechnique de ToulouseToulouseFrance
  6. 6.Laboratoire des Plasmas et de Conversion de l’Energie (LAPLACE), UMR #5002Centre National de la Recherche Scientifique, Université de Toulouse, Institut National Polytechnique de ToulouseToulouseFrance
  7. 7.Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), UMR #5085Centre National de la Recherche Scientifique, Université de Toulouse, Institut National Polytechnique de ToulouseToulouseFrance
  8. 8.Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), UMR #5085Centre National de la Recherche Scientifique, Université de Toulouse, Institut National Polytechnique de ToulouseToulouseFrance
  9. 9.Centre d‘Elaboration de Matériaux et d‘Etudes Structurales (CEMES), UPR #8011Centre National de la Recherche Scientifique, Université de ToulouseToulouseFrance
  10. 10.Laboratoire National des Champs Magnétiques Intenses de Toulouse (LNCMI-T), UPR #3228Centre National de la Recherche Scientifique, Institut National des Sciences Appliquées de Toulouse, Université de ToulouseToulouseFrance

Personalised recommendations