Advertisement

Low-Temperature Scanning Probe Microscopy

  • Mehmet Z. Baykara
  • Markus Morgenstern
  • Alexander Schwarz
  • Udo D. Schwarz
Part of the Springer Handbooks book series (SHB)

Abstract

This chapter is dedicated to scanning probe microscopy (SPM ) operated at cryogenic temperatures, where the more fundamental aspects of phenomena important in the fields of nanoscience and nanotechnology can be investigated with high sensitivity under well-defined conditions. In general, scanning probe techniques allow the measurement of physical properties down to the nanometer scale. Some techniques, such as scanning tunneling microscopy (STM ) and scanning force microscopy (SFM ), even go down to the atomic scale. Various properties are accessible. Most importantly, one can image the arrangement of atoms on conducting surfaces by STM and on insulating samples by SFM. However, electronic states (scanning tunneling spectroscopy), force interaction between different atoms (scanning force spectroscopy), magnetic domains (magnetic force microscopy), magnetic exchange interactions (magnetic exchange force microscopy and spectroscopy), local capacitance (scanning capacitance microscopy), local contact potential differences (Kelvin probe force microscopy), local temperature (scanning thermal microscopy), and local light-induced excitations (scanning near-field microscopy) can also be measured with high spatial resolution, among others. In addition, some modern techniques even allow the controlled manipulation of individual atoms/molecules and the visualization of the internal structure of individual molecules. Moreover, combined STM/SFM experiments are now possible, mainly thanks to the advent of tuning forks as sensing elements in low-temperature (LT) SPM systems.

Probably the most important advantage associated with the low-temperature operation of scanning probes is that it leads to a significantly better signal-to-noise ratio than measuring at room temperature. This is why many researchers work below 100 K. However, there are also physical reasons to use low-temperature equipment. For example, visualizing the internal structure of molecules with SFM or the utilization of scanning tunneling spectroscopy with high energy resolution can only be realized at low temperatures. Moreover, some physical effects such as superconductivity or the Kondo effect are restricted to low temperatures. Here, we describe the advantages of low-temperature scanning probe operation and the basics of related instrumentation. Additionally, some of the important results achieved by low-temperature scanning probe microscopy are summarized. We first focus on the STM, giving examples of atomic manipulation and the analysis of electronic properties in different material arrangements, among others. Afterwards, we describe results obtained by SFM, reporting on atomic-scale and submolecular imaging, as well as three-dimensional (3-D ) force spectroscopy. Results obtained with the method of Kelvin probe force microscopy (KPFM ) that is used to study variations in local contact potential difference (LCPD ) are briefly discussed. Magnetic force microscopy (MFM ), magnetic exchange force microscopy (MExFM ), and magnetic resonance force microscopy (MRFM ) are also introduced. Although the presented selection of results is far from complete, we feel that it gives an adequate impression of the fascinating possibilities of low-temperature scanning probe instruments.

In this chapter low temperatures are defined as lower than about 100 K and are normally achieved by cooling with liquid nitrogen or liquid helium. Applications in which SPMs are operated close to 0C are not covered in this chapter.

References

  1. 24.1
    G. Binnig, H. Rohrer: Scanning tunneling microscopy, Helvetica Physica Acta 55, 726–735 (1982)Google Scholar
  2. 24.2
    R. Wiesendanger: Scanning Probe Microscopy and Spectroscopy (Cambridge Univ. Press, Cambridge 1994)Google Scholar
  3. 24.3
    D.A. Bonnell, D.N. Basov, M. Bode, U. Diebold, S.V. Kalinin, V. Madhavan, L. Novotny, M. Salmeron, U.D. Schwarz, P.S. Weiss: Imaging physical phenomena with local probes: From electrons to photons, Rev. Modern Phys. 84, 1343–1381 (2012)Google Scholar
  4. 24.4
    M. Tinkham: Introduction to Superconductivity (McGraw-Hill, New York 1996)Google Scholar
  5. 24.5
    J. Kondo: Theory of dilute magnetic alloys, Solid State Phys. 23, 183–281 (1969)Google Scholar
  6. 24.6
    M. Abe, Y. Sugimoto, O. Custance, S. Morita: Room-temperature reproducible spatial force spectroscopy using atom-tracking technique, Appl. Phys. Lett. 87, 173503 (2005)Google Scholar
  7. 24.7
    M. Abe, Y. Sugimoto, T. Namikawa, K. Morita, N. Oyabu, S. Morita: Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy, Appl. Phys. Lett. 90, 203103 (2007)Google Scholar
  8. 24.8
    T.R. Albrecht, P. Grutter, D. Horne, D. Rugar: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 69, 668–673 (1991)Google Scholar
  9. 24.9
    F.J. Giessibl, H. Bielefeldt, S. Hembacher, J. Mannhart: Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy, Appl. Surf. Sci. 140, 352–357 (1999)Google Scholar
  10. 24.10
    B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman, U.D. Schwarz: Three-dimensional imaging of short-range chemical forces with picometre resolution, Nat. Nanotechnol. 4, 307–310 (2009)Google Scholar
  11. 24.11
    M. Morgenstern, D. Haude, V. Gudmundsson, C. Wittneven, R. Dombrowski, R. Wiesendanger: Origin of Landau oscillations observed in scanning tunneling spectroscopy on n-InAs(110), Phys. Rev. B 62, 7257–7263 (2000)Google Scholar
  12. 24.12
    B. Uluutku, M.Z. Baykara: Effect of lateral tip stiffness on atomic-resolution force field spectroscopy, J. Vac. Sci. Technol. B 31, 041801 (2013)Google Scholar
  13. 24.13
    B. Uluutku, M.Z. Baykara: Artifacts related to tip asymmetry in high-resolution atomic force microscopy and scanning tunneling microscopy measurements of graphitic surfaces, J. Vac. Sci. Technol. B 33, 031802 (2015)Google Scholar
  14. 24.14
    D.M. Eigler, P.S. Weiss, E.K. Schweizer, N.D. Lang: Imaging Xe with a low-temperature scanning tunneling microscope, Phys. Rev. Lett. 66, 1189–1192 (1991)Google Scholar
  15. 24.15
    P.S. Weiss, D.M. Eigler: Site dependence of the apparent shape of a molecule in scanning tunneling micoscope images: Benzene on Pt {111}, Phys. Rev. Lett. 71, 3139–3142 (1993)Google Scholar
  16. 24.16
    D.M. Eigler, E.K. Schweizer: Positioning single atoms with a scanning tunnelling microscope, Nature 344, 524–526 (1990)Google Scholar
  17. 24.17
    H.J. Hug, B. Stiefel, P.J.A. van Schendel, A. Moser, S. Martin, H.J. Guntherodt: A low temperature ultrahigh vacuum scanning force microscope, Rev. Sci. Instrum. 70, 3625–3640 (1999)Google Scholar
  18. 24.18
    B.J. Albers, M. Liebmann, T.C. Schwendemann, M.Z. Baykara, M. Heyde, M. Salmeron, E.I. Altman, U.D. Schwarz: Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy, Rev. Sci. Instrum. 79, 033704 (2008)Google Scholar
  19. 24.19
    F.J. Giessibl: Advances in atomic force microscopy, Rev. Modern Phys. 75, 949–983 (2003)Google Scholar
  20. 24.20
    G. Dujardin, R.E. Walkup, P. Avouris: Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope, Science 255, 1232–1235 (1992)Google Scholar
  21. 24.21
    H.J. Lee, W. Ho: Single-bond formation and characterization with a scanning tunneling microscope, Science 286, 1719–1722 (1999)Google Scholar
  22. 24.22
    J. Repp, G. Meyer, F.E. Olsson, M. Persson: Controlling the charge state of individual gold adatoms, Science 305, 493–495 (2004)Google Scholar
  23. 24.23
    R. Berndt, R. Gaisch, J.K. Gimzewski, B. Reihl, R.R. Schlittler, W.D. Schneider, M. Tschudy: Photon emission at molecular resolution induced by a scanning tunneling microscope, Science 262, 1425–1427 (1993)Google Scholar
  24. 24.24
    X.H. Qiu, G.V. Nazin, W. Ho: Vibrationally resolved fluorescence excited with submolecular precision, Science 299, 542–546 (2003)Google Scholar
  25. 24.25
    B.G. Briner, M. Doering, H.P. Rust, A.M. Bradshaw: Microscopic molecular diffusion enhanced by adsorbate interactions, Science 278, 257–260 (1997)Google Scholar
  26. 24.26
    F. Meier, L. Zhou, J. Wiebe, R. Wiesendanger: Revealing magnetic interactions from single-atom magnetization curves, Science 320, 82–86 (2008)Google Scholar
  27. 24.27
    S. Loth, M. Etzkorn, C.P. Lutz, D.M. Eigler, A.J. Heinrich: Measurement of fast electron spin relaxation times with atomic resolution, Science 329, 1628–1630 (2010)Google Scholar
  28. 24.28
    F. Donati, S. Rusponi, S. Stepanow, C. Waeckerlin, A. Singha, L. Persichetti, R. Baltic, K. Diller, F. Patthey, E. Fernandes, J. Dreiser, Z. Sljivancanin, K. Kummer, C. Nistor, P. Gambardella, H. Brune: Magnetic remanence in single atoms, Science 352, 318–321 (2016)Google Scholar
  29. 24.29
    J. Kliewer, R. Berndt, E.V. Chulkov, V.M. Silkin, P.M. Echenique, S. Crampin: Dimensionality effects in the lifetime of surface states, Science 288, 1399–1402 (2000)Google Scholar
  30. 24.30
    M.F. Crommie, C.P. Lutz, D.M. Eigler: Imaging standing waves in a two-dimensional electron gas, Nature 363, 524–527 (1993)Google Scholar
  31. 24.31
    H. Gawronski, M. Mehlhorn, K. Morgenstern: Imaging phonon excitation with atomic resolution, Science 319, 930–933 (2008)Google Scholar
  32. 24.32
    A.J. Heinrich, J.A. Gupta, C.P. Lutz, D.M. Eigler: Single-atom spin-flip spectroscopy, Science 306, 466–469 (2004)Google Scholar
  33. 24.33
    B.C. Stipe, M.A. Rezaei, W. Ho: Single-molecule vibrational spectroscopy and microscopy, Science 280, 1732–1735 (1998)Google Scholar
  34. 24.34
    C.W.J. Beenakker, H. Vanhouten: Quantum transport in semiconductor nanostructures, Solid State Phys. 44, 1–228 (1991)Google Scholar
  35. 24.35
    K.K. Gomes, A.N. Pasupathy, A. Pushp, S. Ono, Y. Ando, A. Yazdani: Visualizing pair formation on the atomic scale in the high-T-c superconductor Bi2Sr2CaCu2O8+δ, Nature 447, 569–572 (2007)Google Scholar
  36. 24.36
    K.M. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida, J.C. Davis: Imaging the granular structure of high-T-c superconductivity in underdoped Bi2Sr2CaCu2O8+δ, Nature 415, 412–416 (2002)Google Scholar
  37. 24.37
    J. Lee, K. Fujita, K. McElroy, J.A. Slezak, M. Wang, Y. Aiura, H. Bando, M. Ishikado, T. Masui, J.X. Zhu, A.V. Balatsky, H. Eisaki, S. Uchida, J.C. Davis: Interplay of electron-lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ, Nature 442, 546–550 (2006)Google Scholar
  38. 24.38
    R.S. Becker, J.A. Golovchenko, B.S. Swartzentruber: Atomic-scale surface modifications using a tunnelling microscope, Nature 325, 419–421 (1987)Google Scholar
  39. 24.39
    P.G. Piva, G.A. DiLabio, J.L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W.A. Hofer, R.A. Wolkow: Field regulation of single-molecule conductivity by a charged surface atom, Nature 435, 658–661 (2005)Google Scholar
  40. 24.40
    J.A. Stroscio, D.M. Eigler: Atomic and molecular manipulation with the scanning tunneling microscope, Science 254, 1319–1326 (1991)Google Scholar
  41. 24.41
    A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler: Molecule cascades, Science 298, 1381–1387 (2002)Google Scholar
  42. 24.42
    L. Bartels, G. Meyer, K.H. Rieder: Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip, Phys. Rev. Lett. 79, 697–700 (1997)Google Scholar
  43. 24.43
    J.J. Schulz, R. Koch, K.H. Rieder: New mechanism for single atom manipulation, Phys. Rev. Lett. 84, 4597–4600 (2000)Google Scholar
  44. 24.44
    J.A. Stroscio, R.J. Celotta: Controlling the dynamics of a single atom in lateral atom manipulation, Science 306, 242–247 (2004)Google Scholar
  45. 24.45
    M. Lastapis, M. Martin, D. Riedel, L. Hellner, G. Comtet, G. Dujardin: Picometer-scale electronic control of molecular dynamics inside a single molecule, Science 308, 1000–1003 (2005)Google Scholar
  46. 24.46
    J.A. Stroscio, F. Tavazza, J.N. Crain, R.J. Celotta, A.M. Chaka: Electronically induced atom motion engineered CoCun nanostructures, Science 313, 948–951 (2006)Google Scholar
  47. 24.47
    M. Ternes, C.P. Lutz, C.F. Hirjibehedin, F.J. Giessibl, A.J. Heinrich: The force needed to move an atom on a surface, Science 319, 1066–1069 (2008)Google Scholar
  48. 24.48
    J.I. Pascual, N. Lorente, Z. Song, H. Conrad, H.P. Rust: Selectivity in vibrationally mediated single-molecule chemistry, Nature 423, 525–528 (2003)Google Scholar
  49. 24.49
    T.C. Shen, C. Wang, G.C. Abeln, J.R. Tucker, J.W. Lyding, P. Avouris, R.E. Walkup: Atomic-scale desorption through electronic and vibrational excitation mechanisms, Science 268, 1590–1592 (1995)Google Scholar
  50. 24.50
    T. Komeda, Y. Kim, M. Kawai, B.N.J. Persson, H. Ueba: Lateral hopping of molecules induced by excitation of internal vibration mode, Science 295, 2055–2058 (2002)Google Scholar
  51. 24.51
    Y.W. Mo: Reversible rotation of antimony dimers on the silicon (001) surface with a scanning tunneling microscope, Science 261, 886–888 (1993)Google Scholar
  52. 24.52
    B.C. Stipe, M.A. Rezaei, W. Ho: Inducing and viewing the rotational motion of a single molecule, Science 279, 1907–1909 (1998)Google Scholar
  53. 24.53
    P. Liljeroth, J. Repp, G. Meyer: Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules, Science 317, 1203–1206 (2007)Google Scholar
  54. 24.54
    P. Maksymovych, D.B. Dougherty, X.Y. Zhu, J.T. Yates Jr.: Nonlocal dissociative chemistry of adsorbed molecules induced by localized electron injection into metal surfaces, Phys. Rev. Lett. 99, 016101 (2007)Google Scholar
  55. 24.55
    S. Katano, Y. Kim, M. Hori, M. Trenary, M. Kawai: Reversible control of hydrogenation of a single molecule, Science 316, 1883–1886 (2007)Google Scholar
  56. 24.56
    G.V. Nazin, X.H. Qiu, W. Ho: Visualization and spectroscopy of a metal-molecule-metal bridge, Science 302, 77–81 (2003)Google Scholar
  57. 24.57
    J. Repp, G. Meyer, S. Paavilainen, F.E. Olsson, M. Persson: Imaging bond formation between a gold atom and pentacene on an insulating surface, Science 312, 1196–1199 (2006)Google Scholar
  58. 24.58
    R. Yamachika, M. Grobis, A. Wachowiak, M.F. Crommie: Controlled atomic doping of a single C-60 molecule, Science 304, 281–284 (2004)Google Scholar
  59. 24.59
    S.W. Hla, L. Bartels, G. Meyer, K.H. Rieder: Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering, Phys. Rev. Lett. 85, 2777–2780 (2000)Google Scholar
  60. 24.60
    Y. Kim, T. Komeda, M. Kawai: Single-molecule reaction and characterization by vibrational excitation, Phys. Rev. Lett. 89, 126104 (2002)Google Scholar
  61. 24.61
    M. Berthe, R. Stiufiuc, B. Grandidier, D. Deresmes, C. Delerue, D. Stievenard: Probing the carrier capture rate of a single quantum level, Science 319, 436–438 (2008)Google Scholar
  62. 24.62
    N. Neel, J. Kroeger, L. Limot, K. Palotas, W.A. Hofer, R. Berndt: Conductance and Kondo effect in a controlled single-atom contact, Phys. Rev. Lett. 98, 016801 (2007)Google Scholar
  63. 24.63
    J. Tersoff, D.R. Hamann: Theory and application for the scanning tunneling microscope, Phys. Rev. Lett. 50, 1998–2001 (1983)Google Scholar
  64. 24.64
    C.J. Chen: Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, Oxford 2007)Google Scholar
  65. 24.65
    J. Wintterlin, J. Wiechers, H. Brune, T. Gritsch, H. Hofer, R.J. Behm: Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy, Phys. Rev. Lett. 62, 59–62 (1989)Google Scholar
  66. 24.66
    J.A. Stroscio, R.M. Feenstra, A.P. Fein: Electronic structure of the Si (111) 2 × 1 surface by scanning-tunneling microscopy, Phys. Rev. Lett. 57, 2579–2582 (1986)Google Scholar
  67. 24.67
    A.L.V. de Parga, O.S. Hernan, R. Miranda, A.L. Yeyati, N. Mingo, A. Martin-Rodero, F. Flores: Electron resonances in sharp tips and their role in tunneling spectroscopy, Phys. Rev. Lett. 80, 357–360 (1998)Google Scholar
  68. 24.68
    S.H. Pan, E.W. Hudson, J.C. Davis: Vacuum tunneling of superconducting quasiparticles from atomically sharp scanning tunneling microscope tips, Appl. Phys. Lett. 73, 2992–2994 (1998)Google Scholar
  69. 24.69
    J.T. Li, W.D. Schneider, R. Berndt, O.R. Bryant, S. Crampin: Surface-state lifetime measured by scanning tunneling spectroscopy, Phys. Rev. Lett. 81, 4464–4467 (1998)Google Scholar
  70. 24.70
    L. Burgi, O. Jeandupeux, H. Brune, K. Kern: Probing hot-electron dynamics at surfaces with a cold scanning tunneling microscope, Phys. Rev. Lett. 82, 4516–4519 (1999)Google Scholar
  71. 24.71
    J.W.G. Wildoer, C. Harmans, H. van Kempen: Observation of Landau levels at the InAs(110) surface by scanning tunneling spectroscopy, Phys. Rev. B 55, 16013–16016 (1997)Google Scholar
  72. 24.72
    M. Morgenstern, V. Gudmundsson, R. Dombrowski, C. Wittneven, R. Wiesendanger: Nonlocality of the exchange interaction probed by scanning tunneling spectroscopy, Phys. Rev. B 201301, 63 (2001)Google Scholar
  73. 24.73
    L. Limot, E. Pehlke, J. Kroger, R. Berndt: Surface-state localization at adatoms, Phys. Rev. Lett. 94, 036805 (2005)Google Scholar
  74. 24.74
    F.E. Olsson, M. Persson, A.G. Borisov, J.P. Gauyacq, J. Lagoute, S. Folsch: Localization of the Cu(111) surface state by single Cu adatoms, Phys. Rev. Lett. 93, 206803 (2004)Google Scholar
  75. 24.75
    N. Nilius, T.M. Wallis, M. Persson, W. Ho: Distance dependence of the interaction between single atoms: Gold dimers on NiAl(110), Phys. Rev. Lett. 90, 196103 (2003)Google Scholar
  76. 24.76
    H.J. Lee, W. Ho, M. Persson: Spin splitting of s and p states in single atoms and magnetic coupling in dimers on a surface, Phys. Rev. Lett. 92, 186802 (2004)Google Scholar
  77. 24.77
    M.V. Grishin, F.I. Dalidchik, S.A. Kovalevskii, N.N. Kolchenko, B.R. Shub: Isotope effect in the vibrational spectra of water measured in experiments with a scanning tunneling microscope, Jetp Lett. 66, 37–40 (1997)Google Scholar
  78. 24.78
    Y. Sainoo, Y. Kim, T. Okawa, T. Komeda, H. Shigekawa, M. Kawai: Excitation of molecular vibrational modes with inelastic scanning tunneling microscopy processes: Examination through action spectra of cis-2-butene on Pd(110), Phys. Rev. Lett. 95, 246102 (2005)Google Scholar
  79. 24.79
    X.H. Qiu, G.V. Nazin, W. Ho: Vibronic states in single molecule electron transport, Phys. Rev. Lett. 92, 2016102 (2004)Google Scholar
  80. 24.80
    A.C. Hewson: The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge 1993)Google Scholar
  81. 24.81
    J.T. Li, W.D. Schneider, R. Berndt, B. Delley: Kondo scattering observed at a single magnetic impurity, Phys. Rev. Lett. 80, 2893–2896 (1998)Google Scholar
  82. 24.82
    V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen: Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance, Science 280, 567–569 (1998)Google Scholar
  83. 24.83
    T.W. Odom, J.L. Huang, C.L. Cheung, C.M. Lieber: Magnetic clusters on single-walled carbon nanotubes: The Kondo effect in a one-dimensional host, Science 290, 1549–1552 (2000)Google Scholar
  84. 24.84
    M. Ouyang, J.L. Huang, C.L. Cheung, C.M. Lieber: Energy gaps in ‘‘metallic’’ single-walled carbon nanotubes, Science 292, 702–705 (2001)Google Scholar
  85. 24.85
    U. Fano: Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124, 1866–1878 (1969)zbMATHGoogle Scholar
  86. 24.86
    P. Wahl, L. Diekhoner, M.A. Schneider, L. Vitali, G. Wittich, K. Kern: Kondo temperature of magnetic impurities at surfaces, Phys. Rev. Lett. 93, 176603 (2004)Google Scholar
  87. 24.87
    Y.-S. Fu, S.-H. Ji, X. Chen, X.-C. Ma, R. Wu, C.-C. Wang, W.-H. Duan, X.-H. Qiu, B. Sun, P. Zhang, J.-F. Jia, Q.-K. Xue: Manipulating the Kondo resonance through quantum size effects, Phys. Rev. Lett. 99, 256601 (2007)Google Scholar
  88. 24.88
    J. Henzl, K. Morgenstern: Contribution of the surface state to the observation of the surface Kondo resonance, Phys. Rev. Lett. 98, 266601 (2007)Google Scholar
  89. 24.89
    P. Wahl, P. Simon, L. Diekhoener, V.S. Stepanyuk, P. Bruno, M.A. Schneider, K. Kern: Exchange interaction between single magnetic adatoms, Phys. Rev. Lett. 98, 056601 (2007)Google Scholar
  90. 24.90
    T. Jamneala, V. Madhavan, M.F. Crommie: Kondo response of a single antiferromagnetic chromium trimer, Phys. Rev. Lett. 87, 256804 (2001)Google Scholar
  91. 24.91
    P. Wahl, L. Diekhoner, G. Wittich, L. Vitali, M.A. Schneider, K. Kern: Kondo effect of molecular complexes at surfaces: Ligand control of the local spin coupling, Phys. Rev. Lett. 95, 166601 (2005)Google Scholar
  92. 24.92
    A.D. Zhao, Q.X. Li, L. Chen, H.J. Xiang, W.H. Wang, S. Pan, B. Wang, X.D. Xiao, J.L. Yang, J.G. Hou, Q.S. Zhu: Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding, Science 309, 1542–1544 (2005)Google Scholar
  93. 24.93
    V. Iancu, A. Deshpande, S.-W. Hla: Manipulation of the Kondo effect via two-dimensional molecular assembly, Phys. Rev. Lett. 97, 266603 (2006)Google Scholar
  94. 24.94
    L. Gao, W. Ji, Y.B. Hu, Z.H. Cheng, Z.T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S.X. Du, W.A. Hofer, X.C. Xie, H.J. Gao: Site-specific Kondo effect at ambient temperatures in iron-based molecules, Phys. Rev. Lett. 99, 106402 (2007)Google Scholar
  95. 24.95
    H.C. Manoharan, C.P. Lutz, D.M. Eigler: Quantum mirages formed by coherent projection of electronic structure, Nature 403, 512–515 (2000)Google Scholar
  96. 24.96
    H.A. Mizes, J.S. Foster: Long-range electronic perturbations caused by defects using scanning tunneling microscopy, Science 244, 559–562 (1989)Google Scholar
  97. 24.97
    P.T. Sprunger, L. Petersen, E.W. Plummer, E. Laegsgaard, F. Besenbacher: Giant friedel oscillations on the beryllium(0001) surface, Science 275, 1764–1767 (1997)Google Scholar
  98. 24.98
    P. Hofmann, B.G. Briner, M. Doering, H.P. Rust, E.W. Plummer, A.M. Bradshaw: Anisotropic two-dimensional Friedel oscillations, Phys. Rev. Lett. 79, 265–268 (1997)Google Scholar
  99. 24.99
    E.J. Heller, M.F. Crommie, C.P. Lutz, D.M. Eigler: Scattering and absorption of surface electron waves in quantum corrals, Nature 369, 464–466 (1994)Google Scholar
  100. 24.100
    M. van der Wielen, A.J.A. van Roij, H. van Kempen: Direct observation of Friedel oscillations around incorporated sie, dopants in GaAs by low-temperature scanning tunneling microscopy, Phys. Rev. Lett. 76, 1075–1078 (1996)Google Scholar
  101. 24.101
    T. Maltezopoulos, A. Bolz, C. Meyer, C. Heyn, W. Hansen, M. Morgenstern, R. Wiesendanger: Wave-function mapping of InAs quantum dots by scanning tunneling spectroscopy, Phys. Rev. Lett. 91, 196804 (2003)Google Scholar
  102. 24.102
    O. Millo, D. Katz, Y.W. Cao, U. Banin: Imaging and spectroscopy of artificial-atom states in core/shell nanocrystal quantum dots, Phys. Rev. Lett. 86, 5751–5754 (2001)Google Scholar
  103. 24.103
    R. Temirov, S. Soubatch, A. Luican, F.S. Tautz: Free-electron-like dispersion in an organic monolayer film on a metal substrate, Nature 444, 350–353 (2006)Google Scholar
  104. 24.104
    K. Suzuki, K. Kanisawa, C. Janer, S. Perraud, K. Takashina, T. Fujisawa, Y. Hirayama: Spatial imaging of two-dimensional electronic states in semiconductor quantum wells, Phys. Rev. Lett. 98, 136802 (2007)Google Scholar
  105. 24.105
    S.G. Lemay, J.W. Janssen, M. van den Hout, M. Mooij, M.J. Bronikowski, P.A. Willis, R.E. Smalley, L.P. Kouwenhoven, C. Dekker: Two-dimensional imaging of electronic wavefunctions in carbon nanotubes, Nature 412, 617–620 (2001)Google Scholar
  106. 24.106
    L.C. Venema, J.W.G. Wildoer, J.W. Janssen, S.J. Tans, H. Tuinstra, L.P. Kouwenhoven, C. Dekker: Imaging electron wave functions of quantized energy levels in carbon nanotubes, Science 283, 52–55 (1999)Google Scholar
  107. 24.107
    C.R. Moon, L.S. Mattos, B.K. Foster, G. Zeltzer, W. Ko, H.C. Manoharan: Quantum phase extraction in isospectral electronic nanostructures, Science 319, 782–787 (2008)MathSciNetGoogle Scholar
  108. 24.108
    X.H. Lu, M. Grobis, K.H. Khoo, S.G. Louie, M.F. Crommie: Spatially mapping the spectral density of a single C-60 molecule, Phys. Rev. Lett. 90, 096802 (2003)Google Scholar
  109. 24.109
    F. Marczinowski, J. Wiebe, J.M. Tang, M.E. Flatte, F. Meier, M. Morgenstern, R. Wiesendanger: Local electronic structure near mn acceptors in InAs: Surface-induced symmetry breaking and coupling to host states, Phys. Rev. Lett. 99, 157202 (2007)Google Scholar
  110. 24.110
    A.M. Yakunin, A.Y. Silov, P.M. Koenraad, J.H. Wolter, W. Van Roy, J. De Boeck, J.M. Tang, M.E. Flatte: Spatial structure of an individual Mn acceptor in GaAs, Phys. Rev. Lett. 92, 216806 (2004)Google Scholar
  111. 24.111
    J.N. Crain, D.T. Pierce: End states in one-dimensional atom chains, Science 307, 703–706 (2005)Google Scholar
  112. 24.112
    N. Nilius, T.M. Wallis, W. Ho: Development of one-dimensional band structure in artificial gold chains, Science 297, 1853–1856 (2002)Google Scholar
  113. 24.113
    D. Kitchen, A. Richardella, J.-M. Tang, M.E. Flatte, A. Yazdani: Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions, Nature 442, 436–439 (2006)Google Scholar
  114. 24.114
    C. Wittneven, R. Dombrowski, M. Morgenstern, R. Wiesendanger: Scattering states of ionized dopants probed by low temperature scanning tunneling spectroscopy, Phys. Rev. Lett. 81, 5616–5619 (1998)Google Scholar
  115. 24.115
    D. Haude, M. Morgenstern, I. Meinel, R. Wiesendanger: Local density of states of a three-dimensional conductor in the extreme quantum limit, Phys. Rev. Lett. 86, 1582–1585 (2001)Google Scholar
  116. 24.116
    R. Joynt, R.E. Prange: Conditions for the quantum hall effect, Phys. Rev. B 29, 3303–3317 (1984)Google Scholar
  117. 24.117
    M. Morgenstern, J. Klijn, C. Meyer, R. Wiesendanger: Real-space observation of drift states in a two-dimensional electron system at high magnetic fields, Phys. Rev. Lett. 90, 056804 (2003)Google Scholar
  118. 24.118
    M. Morgenstern, J. Klijn, C. Meyer, M. Getzlaff, R. Adelung, R.A. Romer, K. Rossnagel, L. Kipp, M. Skibowski, R. Wiesendanger: Direct comparison between potential landscape and local density of states in a disordered two-dimensional electron system, Phys. Rev. Lett. 89, 136806 (2002)Google Scholar
  119. 24.119
    E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan: Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. 42, 673–676 (1979)Google Scholar
  120. 24.120
    C. Meyer, J. Klijn, M. Morgenstern, R. Wiesendanger: Direct measurement of the local density of states of a disordered one-dimensional conductor, Phys. Rev. Lett. 91, 076803 (2003)Google Scholar
  121. 24.121
    N. Oncel, A. van Houselt, J. Huijben, A.S. Hallback, O. Gurlu, H.J.W. Zandvliet, B. Poelsema: Quantum confinement between self-organized Pt nanowires on Ge(001), Phys. Rev. Lett. 95, 116801 (2005)Google Scholar
  122. 24.122
    J. Lee, S. Eggert, H. Kim, S.J. Kahng, H. Shinohara, Y. Kuk: Real space imaging of one-dimensional standing waves: Direct evidence for a Luttinger liquid, Phys. Rev. Lett. 93, 166403 (2004)Google Scholar
  123. 24.123
    R.E. Peierls: Quantum Theory of Solids (Clarendon, Oxford 1955)zbMATHGoogle Scholar
  124. 24.124
    C.G. Slough, W.W. McNairy, R.V. Coleman, B. Drake, P.K. Hansma: Charge-density waves studied with the use of a scanning tunneling microscope, Phys. Rev. B 34, 994–1005 (1986)Google Scholar
  125. 24.125
    X.L. Wu, C.M. Lieber: Hexagonal domain-like charge density wave phase of TaS2 determined by scanning tunneling microscopy, Science 243, 1703–1705 (1989)Google Scholar
  126. 24.126
    T. Nishiguchi, M. Kageshima, N. Ara-Kato, A. Kawazu: Behavior of charge density waves in a one-dimensional organic conductor visualized by scanning tunneling microscopy, Phys. Rev. Lett. 81, 3187–3190 (1998)Google Scholar
  127. 24.127
    X.L. Wu, C.M. Lieber: Direct observation of growth and melting of the hexagonal-domain charge-density-wave phase in 1T-TaS2 by scanning tunneling microscopy, Phys. Rev. Lett. 64, 1150–1153 (1990)Google Scholar
  128. 24.128
    J.M. Carpinelli, H.H. Weitering, E.W. Plummer, R. Stumpf: Direct observation of a surface charge density wave, Nature 381, 398–400 (1996)Google Scholar
  129. 24.129
    H.H. Weitering, J.M. Carpinelli, A.P. Melechko, J.D. Zhang, M. Bartkowiak, E.W. Plummer: Defect-mediated condensation of a charge density wave, Science 285, 2107–2110 (1999)Google Scholar
  130. 24.130
    S. Modesti, L. Petaccia, G. Ceballos, I. Vobornik, G. Panaccione, G. Rossi, L. Ottaviano, R. Larciprete, S. Lizzit, A. Goldoni: Insulating ground state of Sn/Si(111)-(root 3 × root 3)R30 degrees, Phys. Rev. Lett. 98, 126401 (2007)Google Scholar
  131. 24.131
    K. Swamy, A. Menzel, R. Beer, E. Bertel: Charge-density waves in self-assembled halogen-bridged metal chains, Phys. Rev. Lett. 86, 1299–1302 (2001)Google Scholar
  132. 24.132
    H.W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C.M. Lee, S.D. Kevan, T. Ohta, T. Nagao, S. Hasegawa: Instability and charge density wave of metallic quantum chains on a silicon surface, Phys. Rev. Lett. 82, 4898–4901 (1999)Google Scholar
  133. 24.133
    J.J. Kim, W. Yamaguchi, T. Hasegawa, K. Kitazawa: Observation of mott localization gap using low temperature scanning tunneling spectroscopy in commensurate 1 T–T a Sa 2, Phys. Rev. Lett. 73, 2103–2106 (1994)Google Scholar
  134. 24.134
    A. Wachowiak, R. Yamachika, K.H. Khoo, Y. Wang, M. Grobis, D.H. Lee, S.G. Louie, M.F. Crommie: Visualization of the molecular Jahn–Teller effect in an insulating K4C60 monolayer, Science 310, 468–470 (2005)Google Scholar
  135. 24.135
    J. Bardeen, L.N. Cooper, J.R. Schrieffer: Theory of superconductivity, Phys. Rev. 108, 1175–1204 (1957)MathSciNetzbMATHGoogle Scholar
  136. 24.136
    A. Yazdani, B.A. Jones, C.P. Lutz, M.F. Crommie, D.M. Eigler: Probing the local effects of magnetic impurities on superconductivity, Science 275, 1767–1770 (1997)Google Scholar
  137. 24.137
    K. Inoue, H. Takayanagi: Local tunneling spectroscopy of a Nb/InAs/Nb superconducting proximity system with a scanning tunneling microscope, Phys. Rev. B 43, 6214–6215 (1991)Google Scholar
  138. 24.138
    S.H. Tessmer, M.B. Tarlie, D.J. VanHarlingen, D.L. Maslov, P.M. Goldbart: Probing the superconducting proximity effect in NbSe2 by scanning tunneling microscopy, Phys. Rev. Lett. 77, 924–927 (1996)Google Scholar
  139. 24.139
    H.F. Hess, R.B. Robinson, R.C. Dynes, J.M. Valles, J.V. Waszczak: Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid, Phys. Rev. Lett. 62, 214–216 (1989)Google Scholar
  140. 24.140
    H.F. Hess, R.B. Robinson, J.V. Waszczak: Vortex-core structure observed with a scanning tunneling microscope, Phys. Rev. Lett. 64, 2711–2714 (1990)Google Scholar
  141. 24.141
    N. Hayashi, M. Ichioka, K. Machida: Star-shaped local density of states around vortices in a type-II superconductor, Phys. Rev. Lett. 77, 4074–4077 (1996)Google Scholar
  142. 24.142
    H. Sakata, M. Oosawa, K. Matsuba, N. Nishida, H. Takeya, K. Hirata: Imaging of a vortex lattice transition in YNi2B2C by scanning tunneling spectroscopy, Phys. Rev. Lett. 84, 1583–1586 (2000)Google Scholar
  143. 24.143
    S. Behler, S.H. Pan, P. Jess, A. Baratoff, H.J. Guntherodt, F. Levy, G. Wirth, J. Wiesner: Vortex pinning in ion-irradiated NbSe2 studied by scanning tunneling microscopy, Phys. Rev. Lett. 72, 1750–1753 (1994)Google Scholar
  144. 24.144
    R. Berthe, U. Hartmann, C. Heiden: Influence of a transport current on the Abrikosov flux lattice observed with a low-temperature scanning tunneling microscope, Ultramicroscopy 42, 696–698 (1992)Google Scholar
  145. 24.145
    N.C. Yeh, C.T. Chen, G. Hammerl, J. Mannhart, A. Schmehl, C.W. Schneider, R.R. Schulz, S. Tajima, K. Yoshida, D. Garrigus, M. Strasik: Evidence of doping-dependent pairing symmetry in cuprate superconductors, Phys. Rev. Lett. 87, 087003 (2001)Google Scholar
  146. 24.146
    K. McElroy, R.W. Simmonds, J.E. Hoffman, D.H. Lee, J. Orenstein, H. Eisaki, S. Uchida, J.C. Davis: Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ, Nature 422, 592–596 (2003)Google Scholar
  147. 24.147
    K. McElroy, J. Lee, J.A. Slezak, D.H. Lee, H. Eisaki, S. Uchida, J.C. Davis: Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ, Science 309, 1048–1052 (2005)Google Scholar
  148. 24.148
    S.H. Pan, E.W. Hudson, K.M. Lang, H. Eisaki, S. Uchida, J.C. Davis: Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ, Nature 403, 746–750 (2000)Google Scholar
  149. 24.149
    A. Polkovnikov, S. Sachdev, M. Vojta: Impurity in a d-wave superconductor: Kondo effect and STM spectra, Phys. Rev. Lett. 86, 296–299 (2001)Google Scholar
  150. 24.150
    A.N. Pasupathy, A. Pushp, K.K. Gomes, C.V. Parker, J. Wen, Z. Xu, G. Gu, S. Ono, Y. Ando, A. Yazdani: Electronic origin of the inhomogeneous pairing interaction in the high-T-c superconductor Bi2Sr2CaCu2O8+δ, Science 320, 196–201 (2008)Google Scholar
  151. 24.151
    I. Maggioaprile, C. Renner, A. Erb, E. Walker, O. Fischer: Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa2Cu3O7−δ, Phys. Rev. Lett. 75, 2754–2757 (1995)Google Scholar
  152. 24.152
    S.H. Pan, E.W. Hudson, A.K. Gupta, K.W. Ng, H. Eisaki, S. Uchida, J.C. Davis: STM studies of the electronic structure of vortex cores in Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 85, 1536–1539 (2000)Google Scholar
  153. 24.153
    C. Renner, B. Revaz, K. Kadowaki, I. Maggio-Aprile, O. Fischer: Observation of the low temperature pseudogap in the vortex cores of Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 80, 3606–3609 (1998)Google Scholar
  154. 24.154
    D.P. Arovas, A.J. Berlinsky, C. Kallin, S.C. Zhang: Superconducting vortex with antiferromagnetic core, Phys. Rev. Lett. 79, 2871–2874 (1997)Google Scholar
  155. 24.155
    J.E. Hoffman, E.W. Hudson, K.M. Lang, V. Madhavan, H. Eisaki, S. Uchida, J.C. Davis: A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ, Science 295, 466–469 (2002)Google Scholar
  156. 24.156
    M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, A. Yazdani: Local ordering in the pseudogap state of the high-T-c superconductor Bi2Sr2CaCu2O8+δ, Science 303, 1995–1998 (2004)Google Scholar
  157. 24.157
    T. Hanaguri, C. Lupien, Y. Kohsaka, D.H. Lee, M. Azuma, M. Takano, H. Takagi, J.C. Davis: A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2, Nature 430, 1001–1005 (2004)Google Scholar
  158. 24.158
    Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J.C. Davis: An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates, Science 315, 1380–1385 (2007)Google Scholar
  159. 24.159
    O. Naaman, W. Teizer, R.C. Dynes: Fluctuation dominated Josephson tunneling with a scanning tunneling microscope, Phys. Rev. Lett. 87, 097004 (2001)Google Scholar
  160. 24.160
    M. Bode, M. Getzlaff, R. Wiesendanger: Spin-polarized vacuum tunneling into the exchange-split surface state of Gd(0001), Phys. Rev. Lett. 81, 4256–4259 (1998)Google Scholar
  161. 24.161
    A. Kubetzka, M. Bode, O. Pietzsch, R. Wiesendanger: Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips, Phys. Rev. Lett. 88, 057201 (2002)Google Scholar
  162. 24.162
    O. Pietzsch, A. Kubetzka, M. Bode, R. Wiesendanger: Observation of magnetic hysteresis at the nanometer scale by spin-polarized scanning tunneling spectroscopy, Science 292, 2053–2056 (2001)Google Scholar
  163. 24.163
    S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Nie, S. Blugel, R. Wiesendanger: Real-space imaging of two-dimensional antiferromagnetism on the atomic scale, Science 288, 1805–1808 (2000)Google Scholar
  164. 24.164
    A. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer, K. von Bergmann, O. Pietzsch, S. Blugel, R. Wiesendanger: Revealing antiferromagnetic order of the Fe monolayer on W(001): Spin-polarized scanning tunneling microscopy and first-principles calculations, Phys. Rev. Lett. 94, 087204 (2005)Google Scholar
  165. 24.165
    A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, R. Wiesendanger: Direct observation of internal spin structure of magnetic vortex cores, Science 298, 577–580 (2002)Google Scholar
  166. 24.166
    M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Bluegel, R. Wiesendanger: Chiral magnetic order at surfaces driven by inversion asymmetry, Nature 447, 190–193 (2007)Google Scholar
  167. 24.167
    C.L. Gao, U. Schlickum, W. Wulfhekel, J. Kirschner: Mapping the surface spin structure of large unit cells: Reconstructed Mn films on Fe(001), Phys. Rev. Lett. 98, 107203 (2007)Google Scholar
  168. 24.168
    K. Von Bergmann, S. Heinze, M. Bode, E.Y. Vedmedenko, G. Bihlmayer, S. Blugel, R. Wiesendanger: Observation of a complex nanoscale magnetic structure in a hexagonal Fe monolayer, Phys. Rev. Lett. 96, 167203 (2006)Google Scholar
  169. 24.169
    Y. Yayon, V.W. Brar, L. Senapati, S.C. Erwin, M.F. Crommie: Observing spin polarization of individual magnetic adatoms, Phys. Rev. Lett. 99, 067202 (2007)Google Scholar
  170. 24.170
    M. Bode, O. Pietzsch, A. Kubetzka, R. Wiesendanger: Shape-dependent thermal switching behavior of superparamagnetic nanoislands, Phys. Rev. Lett. 92, 067201 (2004)Google Scholar
  171. 24.171
    S. Krause, L. Berbil-Bautista, G. Herzog, M. Bode, R. Wiesendanger: Current-induced magnetization switching with a spin-polarized scanning tunneling microscope, Science 317, 1537–1540 (2007)Google Scholar
  172. 24.172
    P.J. Eaton, P. West: Atomic Force Microscopy (Oxford Univ. Press, Oxford 2010)Google Scholar
  173. 24.173
    R. Garcia, R. Perez: Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47, 197–301 (2002)Google Scholar
  174. 24.174
    U. Dürig: Extracting interaction forces and complementary observables in dynamic probe microscopy, Appl. Phys. Lett. 76, 1203–1205 (2000)Google Scholar
  175. 24.175
    F.J. Giessibl: A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy, Appl. Phys. Lett. 78, 123–125 (2001)Google Scholar
  176. 24.176
    B. Gotsmann, B. Anczykowski, C. Seidel, H. Fuchs: Determination of tip–sample interaction forces from measured dynamic force spectroscopy curves, Appl. Surf. Sci. 140, 314–319 (1999)Google Scholar
  177. 24.177
    J.E. Sader, S.P. Jarvis: Accurate formulas for interaction force and energy in frequency modulation force spectroscopy, Appl. Phys. Lett. 84, 1801–1803 (2004)Google Scholar
  178. 24.178
    F.J. Giessibl: Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy, Science 267, 68–71 (1995)Google Scholar
  179. 24.179
    M.A. Lantz, H.J. Hug, P.J.A. van Schendel, R. Hoffmann, S. Martin, A. Baratoff, A. Abdurixit, H.J. Guntherodt, C. Gerber: Low temperature scanning force microscopy of the Si(111)-(7 × 7) surface, Phys. Rev. Lett. 84, 2642–2645 (2000)Google Scholar
  180. 24.180
    N. Suehira, Y. Sugawara, S. Morita: Artifact and fact of Si(111)7 x 7 surface images observed with a low temperature noncontact atomic force microscope (LT-NC-AFM), Jpn. J. Appl. Phys. Part 2 Lett. 40, L292–L294 (2001)Google Scholar
  181. 24.181
    K. Suzuki, M. Iwatsuki, S. Kitamura, C.B. Mooney: Development of low temperature ultrahigh vacuum atomic force microscope/scanning tunneling microscope, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 39, 3750–3752 (2000)Google Scholar
  182. 24.182
    T. Uozumi, Y. Tomiyoshi, N. Suehira, Y. Sugawara, S. Morita: Observation of Si(100) surface with noncontact atomic force microscope at 5 K, Appl. Surf. Sci. 188, 279–284 (2002)Google Scholar
  183. 24.183
    Y.J. Li, H. Nomura, N. Ozaki, Y. Naitoh, M. Kageshima, Y. Sugawara, C. Hobbs, L. Kantorovich: Origin of p(2 × 1) phase on Si(001) by noncontact atomic force microscopy at 5 K, Phys. Rev. Lett. 96, 106104 (2006)Google Scholar
  184. 24.184
    A. Sweetman, S. Jarvis, R. Danza, J. Bamidele, S. Gangopadhyay, G.A. Shaw, L. Kantorovich, P. Moriarty: Toggling bistable atoms via mechanical switching of bond angle, Phys. Rev. Lett. 106, 136101 (2011)Google Scholar
  185. 24.185
    A. Sweetman, S. Jarvis, R. Danza, J. Bamidele, L. Kantorovich, P. Moriarty: Manipulating Si(100) at 5 K using qPlus frequency modulated atomic force microscopy: Role of defects and dynamics in the mechanical switching of atoms, Phys. Rev. B 84, 085426 (2011)Google Scholar
  186. 24.186
    A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger: Simultaneous imaging of the in and as sublattice on InAs(110)-(1 × 1) with dynamic scanning force microscopy, Appl. Surf. Sci. 140, 293–297 (1999)Google Scholar
  187. 24.187
    A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger: Dynamic-mode scanning force microscopy study of n-InAs(110)-(1 × 1) at low temperatures, Phys. Rev. B 61, 2837–2845 (2000)Google Scholar
  188. 24.188
    A. Sweetman, A. Stannard, Y. Sugimoto, M. Abe, S. Morita, P. Moriarty: Simultaneous noncontact AFM and STM of Ag:Si(111)-(\(\sqrt{3}\times\sqrt{3})\mathrm{R}30^\circ\), Phys. Rev. B 87, 075310 (2013)Google Scholar
  189. 24.189
    W. Allers, A. Schwarz, U.D. Schwarz, R. Wiesendanger: Dynamic scanning force microscopy at low temperatures on a van der Waals surface: graphite (0001), Appl. Surf. Sci. 140, 247–252 (1999)Google Scholar
  190. 24.190
    M. Ashino, A. Schwarz, H. Holscher, U.D. Schwarz, R. Wiesendanger: Interpretation of the atomic scale contrast obtained on graphite and single-walled carbon nanotubes in the dynamic mode of atomic force microscopy, Nanotechnology 16, S134–S137 (2005)Google Scholar
  191. 24.191
    S. Hembacher, F.J. Giessibl, J. Mannhart, C.F. Quate: Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite, Phys. Rev. Lett. 94, 056101 (2005)Google Scholar
  192. 24.192
    H. Holscher, W. Allers, U.D. Schwarz, A. Schwarz, R. Wiesendanger: Interpretation of “true atomic resolution” images of graphite (0001) in noncontact atomic force microscopy, Phys. Rev. B 62, 6967–6970 (2000)Google Scholar
  193. 24.193
    W. Allers, A. Schwarz, U.D. Schwarz, R. Wiesendanger: Dynamic scanning force microscopy at low temperatures on a noble-gas crystal: Atomic resolution on the xenon(111) surface, Europhys. Lett. 48, 276–279 (1999)Google Scholar
  194. 24.194
    M.Z. Baykara, H. Moenig, T.C. Schwendemann, O. Uenverdi, E.I. Altman, U.D. Schwarz: Three-dimensional interaction force and tunneling current spectroscopy of point defects on rutile TiO2(110), Appl. Phys. Lett. 108, 071601 (2016)Google Scholar
  195. 24.195
    A. Yurtsever, Y. Sugimoto, M. Abe, S. Morita: NC-AFM imaging of the TiO(2)(110)-(1 x 1) surface at low temperature, Nanotechnology 21, 165702 (2010)Google Scholar
  196. 24.196
    R. Hoffmann, M.A. Lantz, H.J. Hug, P.J.A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.J. Guntherodt: Atomic resolution imaging and force versus distance measurements on KBr (001) using low temperature scanning force microscopy, Appl. Surf. Sci. 188, 238–244 (2002)Google Scholar
  197. 24.197
    D.G. de Oteyza, P. Gorman, Y.-C. Chen, S. Wickenburg, A. Riss, D.J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M.F. Crommie, F.R. Fischer: Direct imaging of covalent bond structure in single-molecule chemical reactions, Science 340, 1434–1437 (2013)Google Scholar
  198. 24.198
    L. Gross: Recent advances in submolecular resolution with scanning probe microscopy, Nat. Chem. 3, 273–278 (2011)Google Scholar
  199. 24.199
    L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer: The chemical structure of a molecule resolved by atomic force microscopy, Science 325, 1110–1114 (2009)Google Scholar
  200. 24.200
    L. Gross, F. Mohn, N. Moll, G. Meyer, R. Ebel, W.M. Abdel-Mageed, M. Jaspars: Organic structure determination using atomic-resolution scanning probe microscopy, Nat. Chem. 2, 821–825 (2010)Google Scholar
  201. 24.201
    L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitian, D. Pena, A. Gourdon, G. Meyer: Bond-order discrimination by atomic force microscopy, Science 337, 1326–1329 (2012)Google Scholar
  202. 24.202
    B. Schuler, G. Meyer, D. Pena, O.C. Mullins, L. Gross: Unraveling the molecular structures of asphaltenes by atomic force microscopy, J. Am. Chem. Soc. 137, 9870–9876 (2015)Google Scholar
  203. 24.203
    A.M. Sweetman, S.P. Jarvis, H.Q. Sang, I. Lekkas, P. Rahe, Y. Wang, J.B. Wang, N.R. Champness, L. Kantorovich, P. Moriarty: Mapping the force field of a hydrogen-bonded assembly, Nat. Commun. 5, 3931 (2014)Google Scholar
  204. 24.204
    P. Hapala, G. Kichin, C. Wagner, F.S. Tautz, R. Temirov, P. Jelinek: Mechanism of high-resolution STM/AFM imaging with functionalized tips, Phys. Rev. B 90, 085421 (2014)Google Scholar
  205. 24.205
    N. Moll, L. Gross, F. Mohn, A. Curioni, G. Meyer: The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips, New J. Phys. 12, 125020 (2010)Google Scholar
  206. 24.206
    F. Mohn, L. Gross, N. Moll, G. Meyer: Imaging the charge distribution within a single molecule, Nat. Nanotechnol. 7, 227–231 (2012)Google Scholar
  207. 24.207
    B. Schuler, S.-X. Liu, Y. Geng, S. Decurtins, G. Meyer, L. Gross: Contrast formation in Kelvin probe force microscopy of single pi-conjugated molecules, Nano Lett. 14, 3342–3346 (2014)Google Scholar
  208. 24.208
    H. Holscher, W. Allers, U.D. Schwarz, A. Schwarz, R. Wiesendanger: Determination of tip–sample interaction potentials by dynamic force spectroscopy, Phys. Rev. Lett. 83, 4780–4783 (1999)Google Scholar
  209. 24.209
    H. Holscher, U.D. Schwarz, R. Wiesendanger: Calculation of the frequency shift in dynamic force microscopy, Appl. Surf. Sci. 140, 344–351 (1999)Google Scholar
  210. 24.210
    R. Hoffmann, C. Barth, A.S. Foster, A.L. Shluger, H.J. Hug, H.J. Guntherodt, R.M. Nieminen, M. Reichling: Measuring site-specific cluster-surface bond formation, J. Am. Chem. Soc. 127, 17863–17866 (2005)Google Scholar
  211. 24.211
    H. Holscher, A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger: Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes, Phys. Rev. B 61, 12678–12681 (2000)Google Scholar
  212. 24.212
    M.A. Lantz, R. Hoffmann, A.S. Foster, A. Baratoff, H.J. Hug, H.R. Hidber, H.J. Guntherodt: Site-specific force-distance characteristics on NaCl(001): Measurements versus atomistic simulations, Phys. Rev. B 74, 245426 (2006)Google Scholar
  213. 24.213
    M.A. Lantz, H.J. Hug, R. Hoffmann, P.J.A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.J. Guntherodt: Quantitative measurement of short-range chemical bonding forces, Science 291, 2580–2583 (2001)Google Scholar
  214. 24.214
    Z.X. Sun, M.P. Boneschanscher, I. Swart, D. Vanmaekelbergh, P. Liljeroth: Quantitative atomic force microscopy with carbon monoxide terminated tips, Phys. Rev. Lett. 106, 046104 (2011)Google Scholar
  215. 24.215
    Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, O. Custance: Chemical identification of individual surface atoms by atomic force microscopy, Nature 446, 64–67 (2007)Google Scholar
  216. 24.216
    M. Abe, Y. Sugimoto, O. Custance, S. Morita: Atom tracking for reproducible force spectroscopy at room temperature with non-contact atomic force microscopy, Nanotechnology 16, 3029–3034 (2005)Google Scholar
  217. 24.217
    M.Z. Baykara, M. Todorovic, H. Monig, T.C. Schwendemann, O. Unverdi, L. Rodrigo, E.I. Altman, R. Perez, U.D. Schwarz: Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements, Phys. Rev. B 87, 155414 (2013)Google Scholar
  218. 24.218
    H. Holscher, S.M. Langkat, A. Schwarz, R. Wiesendanger: Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy, Appl. Phys. Lett. 81, 4428–4430 (2002)Google Scholar
  219. 24.219
    M.Z. Baykara, T.C. Schwendemann, B.J. Albers, N. Pilet, H. Monig, E.I. Altman, U.D. Schwarz: Exploring atomic-scale lateral forces in the attractive regime: A case study on graphite (0001), Nanotechnology 23, 405703 (2012)Google Scholar
  220. 24.220
    M.Z. Baykara, T.C. Schwendemann, E.I. Altman, U.D. Schwarz: Three-dimensional atomic force microscopy-taking surface imaging to the next level, Adv. Mater. 22, 2838–2853 (2010)Google Scholar
  221. 24.221
    B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman, U.D. Schwarz: Data acquisition and analysis procedures for high-resolution atomic force microscopy in three dimensions, Nanotechnology 20, 264002 (2009)Google Scholar
  222. 24.222
    M.Z. Baykara, O.E. Dagdeviren, T.C. Schwendemann, H. Monig, E.I. Altman, U.D. Schwarz: Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations and artifact reduction, Beilstein J. Nanotechnol. 3, 637–650 (2012)Google Scholar
  223. 24.223
    S. Kawai, T. Glatzel, S. Koch, A. Baratoff, E. Meyer: Interaction-induced atomic displacements revealed by drift-corrected dynamic force spectroscopy, Phys. Rev. B 83, 035421 (2011)Google Scholar
  224. 24.224
    Y. Sugimoto, K. Ueda, M. Abe, S. Morita: Three-dimensional scanning force/tunneling spectroscopy at room temperature, J. Phys. Condens. Matter 24, 084008 (2012)Google Scholar
  225. 24.225
    S. Fremy, S. Kawai, R. Pawlak, T. Glatzel, A. Baratoff, E. Meyer: Three-dimensional dynamic force spectroscopy measurements on KBr(001): Atomic deformations at small tip–sample separations, Nanotechnology 23, 055401 (2012)Google Scholar
  226. 24.226
    R. Pawlak, S. Kawai, S. Fremy, T. Glatzel, E. Meyer: Atomic-scale mechanical properties of orientated C(60) molecules revealed by noncontact atomic force microscopy, ACS Nano 5, 6349–6354 (2011)Google Scholar
  227. 24.227
    N. Oyabu, O. Custance, I.S. Yi, Y. Sugawara, S. Morita: Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy, Phys. Rev. Lett. 90, 176102 (2003)Google Scholar
  228. 24.228
    N. Oyabu, Y. Sugimoto, M. Abe, O. Custance, S. Morita: Lateral manipulation of single atoms at semiconductor surfaces using atomic force microscopy, Nanotechnology 16, S112–S117 (2005)Google Scholar
  229. 24.229
    J. Bamidele, S.H. Lee, Y. Kinoshita, R. Turansky, Y. Naitoh, Y.J. Li, Y. Sugawara, I. Stich, L. Kantorovich: Vertical atomic manipulation with dynamic atomic-force microscopy without tip change via a multi-step mechanism, Nat. Commun. 5, 5476 (2014)Google Scholar
  230. 24.230
    Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance, S. Morita: Atom inlays performed at room temperature using atomic force microscopy, Nat. Mater. 4, 156–159 (2005)Google Scholar
  231. 24.231
    Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez, S. Morita: Complex patterning by vertical interchange atom manipulation using atomic force microscopy, Science 322, 413–417 (2008)Google Scholar
  232. 24.232
    S. Kawai, A.S. Foster, F.F. Canova, H. Onodera, S.-I. Kitamura, E. Meyer: Atom manipulation on an insulating surface at room temperature, Nat. Commun. 5, 5403 (2014)Google Scholar
  233. 24.233
    S. Hirth, F. Ostendorf, M. Reichling: Lateral manipulation of atomic size defects on the CaF2(111) surface, Nanotechnology 17, S148–S154 (2006)Google Scholar
  234. 24.234
    S. Kawai, M. Koch, E. Gnecco, A. Sadeghi, R. Pawlak, T. Glatzel, J. Schwarz, S. Goedecker, S. Hecht, A. Baratoff, L. Grill, E. Meyer: Quantifying the atomic-level mechanics of single long physisorbed molecular chains, Proc. Natl. Acad. Sci. U.S.A. 111, 3968–3972 (2014)Google Scholar
  235. 24.235
    G. Langewisch, J. Falter, H. Fuchs, A. Schirmeisen: Forces during the controlled displacement of organic molecules, Phys. Rev. Lett. 110, 036101 (2013)Google Scholar
  236. 24.236
    R. Pawlak, W. Ouyang, A.E. Filippov, L. Kalikhman-Razvozov, S. Kawai, T. Glatzel, E. Gnecco, A. Baratoff, Q. Zheng, O. Hod, M. Urbakh, E. Meyer: Single-molecule tribology: Force microscopy manipulation of a porphyrin derivative on a copper surface, ACS Nano 10, 713–722 (2016)Google Scholar
  237. 24.237
    R. Pawlak, S. Fremy, S. Kawai, T. Glatzel, H.J. Fang, L.A. Fendt, F. Diederich, E. Meyer: Directed rotations of single porphyrin molecules controlled by localized force spectroscopy, ACS Nano 6, 6318–6324 (2012)Google Scholar
  238. 24.238
    S. Kawai, A. Benassi, E. Gnecco, H. Soede, R. Pawlak, X. Feng, K. Muellen, D. Passerone, C.A. Pignedoli, P. Ruffieux, R. Fasel, E. Meyer: Superlubricity of graphene nanoribbons on gold surfaces, Science 351, 957–961 (2016)Google Scholar
  239. 24.239
    M. Nonnenmacher, M.P. Oboyle, H.K. Wickramasinghe: Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923 (1991)Google Scholar
  240. 24.240
    S. Sadewasser, T. Glatzel: Kelvin Probe Force Microscopy (Springer, Berlin, Heidelberg 2012)Google Scholar
  241. 24.241
    T. König, G.H. Simon, H.P. Rust, M. Heyde: Work function measurements of thin oxide films on metals-MgO on Ag(001), J. Phys. Chem. C 113, 11301–11305 (2009)Google Scholar
  242. 24.242
    K. Moloni, B.M. Moskowitz, E.D. Dahlberg: Domain structures in single crystal magnetite below the verwey transition as observed with a low-temperature magnetic force microscope, Geophys. Res. Lett. 23, 2851–2854 (1996)Google Scholar
  243. 24.243
    M. Liebmann, U. Kaiser, A. Schwarz, R. Wiesendanger, U.H. Pi, T.W. Noh, Z.G. Khim, D.W. Kim: Domain nucleation and growth of La0.7Ca0.3MnO3−δ/LaAlO3 films studied by low temperature magnetic force microscopy, J. Appl. Phys. 93, 8319–8321 (2003)Google Scholar
  244. 24.244
    Q.Y. Lu, C.C. Chen, A. de Lozanne: Observation of magnetic domain behavior in colossal magnetoresistive materials with a magnetic force microscope, Science 276, 2006–2008 (1997)Google Scholar
  245. 24.245
    G.M. Xiao, J.H. Ross, A. Parasiris, K.D.D. Rathnayaka, D.G. Naugle: Low-temperature MFM studies of CMR manganites, Physica C 341, 769–770 (2000)Google Scholar
  246. 24.246
    A. Moser, H.J. Hug, I. Parashikov, B. Stiefel, O. Fritz, H. Thomas, K. Baratoff, H.J. Guntherodt, P. Chaudhari: Observation of single vortices condensed into a vortex-glass phase by magnetic force microscopy, Phys. Rev. Lett. 74, 1847–1850 (1995)Google Scholar
  247. 24.247
    U.H. Pi, D.H. Kim, Z.G. Khim, U. Kaiser, M. Liebmann, A. Schwarz, R. Wiesendanger: Vortex dynamics in Bi2Sr2CaCu2O8 single crystal with low density columnar defects studied by magnetic force microscope, J. Low Temp. Phys. 131, 993–1002 (2003)Google Scholar
  248. 24.248
    M. Roseman, P. Grutter: Estimating the magnetic penetration depth using constant-height magnetic force microscopy images of vortices, New J. Phys. 3, 241–248 (2001)Google Scholar
  249. 24.249
    M. Roseman, P. Grutter, A. Badia, V. Metlushko: Flux lattice imaging of a patterned niobium thin film, J. Appl. Phys. 89, 6787–6789 (2001)Google Scholar
  250. 24.250
    A. Volodin, K. Temst, C. Van Haesendonck, Y. Bruynseraede: Imaging of vortices in conventional superconductors by magnetic force microscopy, Physica C 332, 156–159 (2000)Google Scholar
  251. 24.251
    A. Volodin, K. Temst, C. Van Haesendonck, Y. Bruynseraede, M.I. Montero, I.K. Schuller: Magnetic-force microscopy of vortices in thin niobium films: Correlation between the vortex distribution and the thickness-dependent film morphology, Europhys. Lett. 58, 582–588 (2002)Google Scholar
  252. 24.252
    C.W. Yuan, Z. Zheng, A.L. de Lozanne, M. Tortonese, D.A. Rudman, J.N. Eckstein: Vortex images in thin films of YBa2Cu3O7−x and Bi2Sr2CaCu2O8+x obtained by low-temperature magnetic force microscopy, J. Vac. Sci. Technol. B 14, 1210–1213 (1996)Google Scholar
  253. 24.253
    A. Moser, H.J. Hug, B. Stiefel, H.J. Guntherodt: Low temperature magnetic force microscopy on YBa2Cu3O7−δ thin films, J. Magn. Magn. Mater. 190, 114–123 (1998)Google Scholar
  254. 24.254
    A. Volodin, K. Temst, C. Van Haesendonck, Y. Bruynseraede: Observation of the Abrikosov vortex lattice in NbSe2 with magnetic force microscopy, Appl. Phys. Lett. 73, 1134–1136 (1998)Google Scholar
  255. 24.255
    A. Schwarz, R. Wiesendanger: Magnetic sensitive force microscopy, Nano Today 3, 28–39 (2008)Google Scholar
  256. 24.256
    R. Wiesendanger, D. Burgler, G. Tarrach, A. Wadas, D. Brodbeck, H.J. Guntherodt, G. Guntherodt, R.J. Gambino, R. Ruf: Vacuum tunneling of spin-polarized electrons detected by scanning tunneling microscopy, J. Vac. Sci. Technol. B 9, 519–524 (1991)Google Scholar
  257. 24.257
    H. Momida, T. Oguchi: First-principles study on exchange force image of NiO(001) surface using a ferromagnetic Fe probe, Surf. Sci. 590, 42–50 (2005)Google Scholar
  258. 24.258
    U. Kaiser, A. Schwarz, R. Wiesendanger: Magnetic exchange force microscopy with atomic resolution, Nature 446, 522–525 (2007)Google Scholar
  259. 24.259
    R. Schmidt, C. Lazo, U. Kaiser, A. Schwarz, S. Heinze, R. Wiesendanger: Quantitative measurement of the magnetic exchange interaction across a vacuum gap, Phys. Rev. Lett. 106, 257202 (2011)Google Scholar
  260. 24.260
    R. Schmidt, C. Lazo, H. Holscher, U.H. Pi, V. Caciuc, A. Schwarz, R. Wiesendanger, S. Heinze: Probing the magnetic exchange forces of iron on the atomic scale, Nano Lett. 9, 200–204 (2008)Google Scholar
  261. 24.261
    R. Schmidt, A. Schwarz, R. Wiesendanger: Magnetization switching utilizing the magnetic exchange interaction, Phys. Rev. B 86, 174402 (2012)Google Scholar
  262. 24.262
    J.A. Sidles, J.L. Garbini, K.J. Bruland, D. Rugar, O. Zuger, S. Hoen, C.S. Yannoni: Magnetic resonance force microscopy, Rev. Modern Phys. 67, 249–265 (1995)Google Scholar
  263. 24.263
    J.A. Sidles, J.L. Garbini, G.P. Drobny: The theory of oscillator-coupled magnetic resonance with potential applications to molecular imaging, Rev. Sci. Instrum. 63, 3881–3899 (1992)Google Scholar
  264. 24.264
    D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui: Single spin detection by magnetic resonance force microscopy, Nature 430, 329–332 (2004)Google Scholar
  265. 24.265
    H.J. Mamin, D. Rugar: Sub-attonewton force detection at millikelvin temperatures, Appl. Phys. Lett. 79, 3358–3360 (2001)Google Scholar
  266. 24.266
    D. Rugar, O. Zuger, S. Hoen, C.S. Yannoni, H.M. Vieth, R.D. Kendrick: Force detection of nuclear magnetic resonance, Science 264, 1560–1563 (1994)Google Scholar
  267. 24.267
    Z. Zhang, P.C. Hammel, P.E. Wigen: Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy, Appl. Phys. Lett. 68, 2005–2007 (1996)Google Scholar
  268. 24.268
    C.L. Degen, M. Poggio, H.J. Mamin, C.T. Rettner, D. Rugar: Nanoscale magnetic resonance imaging, Proc. Natl. Acad. Sci. U.S.A. 106, 1313–1317 (2009)Google Scholar
  269. 24.269
    R.P. Feynman: There is plenty of room at the bottom, Eng. Sci. 23, 22–25 (1960)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mehmet Z. Baykara
    • 1
  • Markus Morgenstern
    • 2
  • Alexander Schwarz
    • 3
  • Udo D. Schwarz
    • 4
  1. 1.Dept. of Mechanical Engineering & UNAMBilkent UniversityAnkaraTurkey
  2. 2.II. Institute of Physics B & JARA-FITRWTH Aachen UniversityAachenGermany
  3. 3.Institute of Nanostructure and Solid State PhysicsUniversity of HamburgHamburgGermany
  4. 4.Dept. of Mechanical Engineering & Materials ScienceYale UniversityNew HavenUSA

Personalised recommendations