Advertisement

Aerosole

  • Walter Roedel
  • Thomas Wagner
Chapter

Zusammenfassung

In diesem Kapitel werden wichtige Aspekte der Physik und Chemie der Aerosole behandelt. Neben den Entstehungsund atmosphärischen Umwandlungsprozessen werden die chemische Zusammensetzung, Größenverteilungen, Aerosoldynamik und grundlegende Strahlungseigenschaften besprochen.

Literatur

  1. Andreae MO, Hegg DA, Baltensperger U (2009) Sources and nature of atmospheric aerosols. In: Levin Z, Cotton WR (Hrsg) Aerosol pollution impact on precipitation, a scientific review. Springer, BerlinCrossRefGoogle Scholar
  2. Angell JK, Korshover J (1985) Surface temperature changes following six major volcanic episodes between 1780 and 1980. J Clim Appl Meteorol 24:937–951Google Scholar
  3. Barnard WR, Andreae MO, Watkins WE, Bingemer H, Georgii HW (1982) The flux of dimethylsulfide from the oceans to the atmosphere. J Geophys Res 87:8787–8793CrossRefGoogle Scholar
  4. Bauer H, Kasper-Giebl A, Loflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Res 64:109–119. doi:  https://doi.org/10.1016/S0169-8095(02)00084-4CrossRefGoogle Scholar
  5. Berresheim H, Jaeschke W (1982) Sulfur emissions from volcanoes. In: Georgii HW, Jaeschke W (Hrsg) Chemistry of the unpolluted and polluted troposphere. Reidel, Dordrecht, S 325–337CrossRefGoogle Scholar
  6. Boulaud D, Madelaine G, Vigla D, Bricard J (1977) Experimental study on the nucleation of water vapor sulfuric acid binary systems. J Chem Phys 66:4854–4860CrossRefGoogle Scholar
  7. Bower KN, Choularton TW (1993) Cloud processing of the cloud condensation nucleus spectrum and its climatological consequences. Quart J Royal Meteorol Soc 119:655–679CrossRefGoogle Scholar
  8. Castleman AN, Munkelwitz HR, Manowitz B (1974) Isotopic studies of the sulfur component of the stratospheric aerosol layer. Tellus 26:222–234CrossRefGoogle Scholar
  9. Chagnon CW, Junge CE (1961) The vertical distribution of sub-micron particles in the stratosphere. J Meteorol 18:746–752CrossRefGoogle Scholar
  10. Charlson RJ, Heintzenberg J (Hrsg) (1995) Aerosol forcing of climate. Wiley, ChichesterGoogle Scholar
  11. Charlson RJ, Langner J, Rodhe H, Leovy CB, Warren SG (1991) Pertubation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43 AB:152–163CrossRefGoogle Scholar
  12. Deshler T (2008) A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol. Atmospheric Res 90:223–232. doi:  https://doi.org/10.1016/j.atmosres.2008.03.016CrossRefGoogle Scholar
  13. Dubovik O, Lapyonok T, Kaufman YJ, Chin M, Ginoux P, Kahn RA, Sinyuk A (2008) Retrieving global aerosol sources from satellites using inverse modeling. Atmos Chem Phys 8:209–250, doi: https://doi.org/10.5194/acp-8-209-2008CrossRefGoogle Scholar
  14. Dusek U, Frank GP, Hildebrandt L et al (2006) Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312:1375–1378. doi:  https://doi.org/10.1126/science.1125261CrossRefGoogle Scholar
  15. Dutton EG, Christy JR (1992) Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of the El Chichón and Pinatubo. Geophys Res Lett 19:2313–2316CrossRefGoogle Scholar
  16. Elbert W, Taylor PE, Andreae MO, Pöschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569–4588CrossRefGoogle Scholar
  17. Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (Hrsg) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  18. Fuchs NA (1964) The mechanics of aerosols. Pergamon, OxfordGoogle Scholar
  19. Fuzzi S, Andreae MO, Huebert BJ, Kulmala M, Bond TC, Boy M, Doherty SJ, Guenther A, Kanakidou M, Kawaura K, Kerminen VM, Lohmann U, Russell LM, Pöschl U (2006) Critical assessment of the current state of scientific knowledge terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos Chem Phys 6: 2017–2038CrossRefGoogle Scholar
  20. Georgii HW, Lenhard U (1978) Contribution to the atmospheric NH3 budget. Pure Appl Geophys 116:385–391CrossRefGoogle Scholar
  21. Gillette DA (1978) A wind tunnel simulation of the erosion of soil: Effects of soil texture, sandblasting, wind speed and soil condition on dust production. Atmos Environ 12: 1735–1743Google Scholar
  22. Gillette DA, Adams J, Endo C, Smith D (1980) Threshold velocities for input of soil particles into the air by desert soils. J Geophys Res 85:5621–5630CrossRefGoogle Scholar
  23. Hähnel G (1976) The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv Geophys 19: 73–188Google Scholar
  24. Hammer CU, Clausen HB, Dansgaard W (1980) Greenland ice-sheet evidence of post-glacial volcanism and its climatic impact. Nature (London) 288:230–235CrossRefGoogle Scholar
  25. Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218CrossRefGoogle Scholar
  26. Hansen JE, Wang W-C, Lacis AA (1978) Mount Agung eruption provides test of global climatic pertubations. Science 199:1065–1068CrossRefGoogle Scholar
  27. Hidy GM, Brock JR (1970) The dynamics of aerocolloidal systems. Pergamon, OxfordGoogle Scholar
  28. Hofmann DJ (1987) Perturbations of the global atmosphere associated with the El Chichon volcanic eruption of 1982. Rev Geophys 25:743–759CrossRefGoogle Scholar
  29. Hofmann DJ, Rosen JM (1983) Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chichon. Science 222:325–327CrossRefGoogle Scholar
  30. Hofmann DJ, Rosen JM, Peppin TJ, Pinnick RG (1975) Stratospheric aerosol measurements. I: Time variations at Northern midlatitudes. J Atmos Sci 32:1446–1456CrossRefGoogle Scholar
  31. Hofmann DJ, Barnes J, O’Neill M, Trudeau M, Neely R (2009) Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado. Geophys Res Lett 36. doi:  https://doi.org/10.1029/2009GL039008CrossRefGoogle Scholar
  32. Jaenicke R (1978) Über die Dynamik atmosphärischer Aitkenteilchen. Ber Bunsenges Phys Chem 82:1198–1202CrossRefGoogle Scholar
  33. Junge CE (1961) Vertical profiles of condensation nuclei in the stratosphere. J Meteorol 18:501–509CrossRefGoogle Scholar
  34. Junge CE (1963) Air chemistry and radioactivity. Academic Press, New YorkGoogle Scholar
  35. Kanakidou M, Seinfeld JH, Pandis SN et al (2005) Organic aerosol and global climate modelling: A review. Atmos Chem Phys 5:1053–1123. doi:  https://doi.org/10.5194/acp-5-1053-2005CrossRefGoogle Scholar
  36. Käselau KH, Fabian P, Röhrs H (1974) Measurements of aerosol concentration up to a height of 27 km. Pure Appl Geophys 112:877–885Google Scholar
  37. Kaufman YJ, Boucher O, Tanré D, Chin M, Remer LA, Takemura T (2005) Aerosol anthropogenic component estimated from satellite data. Geophys Res Lett 32. doi:  https://doi.org/10.1029/2005GL023125
  38. Keith CH, Arons AB (1954) The growth of sea-salt particles by condensation of atmospheric water vapour. J Meteorol 11:173–184Google Scholar
  39. Kerkweg A, Sander R, Tost H, Jöckel P, Lelieveld J (2007) Technical note: Simulation of detailed aerosol chemistry on the global scale using MECCA-AERO. Atmos Chem Phys 7:2973–2985. doi:  https://doi.org/10.5194/acp-7-2973-2007CrossRefGoogle Scholar
  40. Ketserides G, Jaenicke R (1977) Organische Beimengungen in atmosphärischer Reinluft: Ein Beitrag zur Budget-Abschätzung. In: Aurand K et al (Hrsg) Organische Verunreinigungen in der Umwelt. Schmidt, Berlin, S 379–390Google Scholar
  41. Kinne S, Lohmann U, Feichter J et al (2003) Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. J Geophys Res 108:4634. doi:  https://doi.org/10.1029/2001JD001253
  42. Kinne S, Schulz M, Textor C et al (2006) An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834. doi:  https://doi.org/10.5194/acp-6-1815-2006CrossRefGoogle Scholar
  43. Krämer M, Beltz N, Schell D, Schütz L, Sprengard-Eichel C, Wurzler S (2000) Cloud processing of continental aerosol particles: Experimental investigations for different drop sizes. J Geophys Res 105(D9):11739–11752CrossRefGoogle Scholar
  44. Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry P (2004) Formation and growth rates of ultrafine atmospheric particles: A review of observations. J Aerosol Sci 35:143–176CrossRefGoogle Scholar
  45. Lacis AA, Mishchenko MI (1995) Climate forcing, climate sensitivity, and climate response: A radiative modeling perspective on atmospheric aerosols. In: Charlson RJ, Heintzenberg J (Hrsg) Aerosol forcing of climate. Wiley, Chichester, S 11–42Google Scholar
  46. Lacis AA, Hansen J, Sato M (1992) Climate forcing by stratospheric aerosols. Geophys Res Lett 19:1607–1610CrossRefGoogle Scholar
  47. Lamb HH (1972) Climate, present, past, and future, Bd 1. Methuen, LondonGoogle Scholar
  48. Lazrus AL, Gandrud BW (1974) Stratospheric sulfate aerosol. J Geophys Res 79: 3424–3431CrossRefGoogle Scholar
  49. Levin Z, Cotton WR (2009) Aerosol pollution impact on precipitation, a scientific review. Springer, BerlinGoogle Scholar
  50. Levin Z, Ganor E, Gladstein V (1996) The effects of desert particles coated with sulfate on rainformation in the Eastern Mediterranean. J Appl Meteorol 35:1511–1523CrossRefGoogle Scholar
  51. Lohmann U, Feichter J (2005) Global indirect aerosol effects: A review. Atmos Chem Phys 5:715–737 doi:  https://doi.org/10.5194/acp-5-715-2005CrossRefGoogle Scholar
  52. Mäkelä JM, Aalto MP, Jokinen V, Pohja T, Nissinen A, Palmroth S, Markkanen T, Seitsonen K, Lihavainen KH, Kulmala M (1997) Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophys Res Lett 24:1219–1222CrossRefGoogle Scholar
  53. Mäkelä JM, Hoffmann T, Holzke C, Väkevä M, Suni T, Mattila T, Aalto PP, Tapper U, Kauppinen EI, O’Dowd CD (2002) Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts. J Geophys Res 107(D19):8110. doi:  https://doi.org/10.1029/2001JD000580
  54. Martin ST, Andreae MO, Artaxo P et al (2010) Sources and properties of Amazonian aerosol particles. Rev Geophys 48 doi:  https://doi.org/10.1029/2008RG000280
  55. Mason B (1966) Principles of geochemistry. Wiley and Sons, New YorkGoogle Scholar
  56. McFiggans G, Bale CSE, Ball SM et al (2010) Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLE) Roscoff coastal study. Atmos Chem Phys 10:2975–2999 doi:  https://doi.org/10.5194/acp-10-2975-2010CrossRefGoogle Scholar
  57. Middleton P (1980) A re-examination of atmospheric sulfuric acid aerosol formation and growth. J Aerosol Sci 11:411–414CrossRefGoogle Scholar
  58. Middleton P, Kiang CS (1978) A kinetic aerosol model for the formation and growth of seondary sulfuric acid particles. J Aerosol Sci 9:359–385CrossRefGoogle Scholar
  59. Millikan RA (1923) The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surface. Phys Rev 22:1–23CrossRefGoogle Scholar
  60. Newell RE, Weare BC (1976) Factors governing tropospheric mean temperature. Science 194:1413–1414CrossRefGoogle Scholar
  61. Penner JE, Andreae M, Annegarn H, Barrie L, Feichter J, Hegg D, Jayaraman A, Leaitch R, Murphy D, Nganga J, Pitari G (2001) Aerosols, their Direct and Indirect Effects. In: Climate Change 2001. Working Group I: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  62. Peterson JT, Junge CE (1971) Sources of particulate matter in the atmosphere. In: Matthews WH, Kellogg WW, Robinson GD (Hrsg) Man’s impact on climate. MIT Press, Cambridge, S 310–320Google Scholar
  63. Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7:1961–1971,CrossRefGoogle Scholar
  64. Pollack JB, Toon OB, Sagan C, Summers A, Baldwin B, Van Camp W (1976) Volcanic explosions and climatic change: A theoretical assessment. J Geophys Res 81:1071–1083CrossRefGoogle Scholar
  65. Rahn KA (1976) The chemical composition of atmospheric aerosols. Rep. Graduate school of oceangraphy, University Rhode Island, KingstonGoogle Scholar
  66. Robinson E, Robbins RC (1971) Emissions, concentrations and fate of particulate atmospheric pollutants. Final Rep, SRI Project 8507, Am Petrol Inst 4076Google Scholar
  67. Roedel W (1979) Measurement of sulfuric acid saturation vapor pressure. Implications for aerosol formation by heteromolecular nucleation. J Aerosol Sci 10:375–386CrossRefGoogle Scholar
  68. Roedel W (1982) Thermal diffusion of aerosol particles: Lagrangian autocorrelation as an alternative to Langevin’s equation. J Aerosol Sci 13:597–601CrossRefGoogle Scholar
  69. Rosen JM, Hofmann DJ, Laby J (1975) Stratospheric aerosol measurements II: The world wide distribution. J Atmos Sci 32:1457–1462CrossRefGoogle Scholar
  70. Rosen JM, Hofmann DJ (1977) Balloon-born measurements of condensation nuclei. J Appl Meteorol 16:56–62Google Scholar
  71. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics, from air pollution to climate change, 2. Aufl. John Wiley & Sons, New YorkGoogle Scholar
  72. Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling after the eruption of mount pinatubo: A test of climate feedback by water vapor. Science 296:727–730. doi:  https://doi.org/10.1126/science.296.5568.727CrossRefGoogle Scholar
  73. Stern DI (2006) Reversal of the trend in global anthropogenic sulfur emissions. Glob Environ Change 16:207–220. doi:  https://doi.org/10.1016/j.gloenvcha.2006.01.001CrossRefGoogle Scholar
  74. Textor C, Schulz M, Guibert S et al (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6:1777–1813. doi:  https://doi.org/10.5194/acp-6-1777- 2006
  75. Trickl T, Giehl H, Jäger H, Vogelmann H (2013) 35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: From Fuego to Eyjafjallajökull, and beyond. Atmos Chem Phys 13:5205–5225, doi:  https://doi.org/10.5194/acp-13-5205-2013CrossRefGoogle Scholar
  76. Turco RP, Whitten RC, Toon OB, Pollack JB, Hamill P (1980) OCS, stratospheric aerosols and climate. Nature (London) 283:283–286CrossRefGoogle Scholar
  77. Turekian KK (1971) Geochemical distribution of elements. McGraw-Hill Encyclopedia of Science and Technology 4:627–630Google Scholar
  78. Twomey SA (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152CrossRefGoogle Scholar
  79. Walter H (1973) Coagulation and size distribution of condensation aerosols. J Aerosol Sci 4:115CrossRefGoogle Scholar
  80. Warneck P (1988) Chemistry of the natural atmosphere. Academic Press, San DiegoGoogle Scholar
  81. Winkler P (1975) Chemical analysis of Aitken particles (< 0,2 µm) over the Atlantic ocean. Geophys Res Lett 2:45–48Google Scholar
  82. Wurzler S, Reisin TG, Levin Z (2000) Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. J Geophys Res 105(D4):4501–4512CrossRefGoogle Scholar
  83. Yu H, Kaufman YJ, Chin M et al (2006) A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos Chem Phys 6:613–666. doi:  https://doi.org/10.5194/acp-6-613-2006CrossRefGoogle Scholar
  84. Yue GK, Hamill P (1979) The homogeneous nucleation rates of H2SO4-H2O aerosol particles in air. J Aerosol Sci 10:609–614CrossRefGoogle Scholar
  85. Zebel G (1966) Coagulation of aerosols. In: Davies CN (Hrsg) Aerosol Science. Academic Press, London, S 31–58Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Walter Roedel
    • 1
  • Thomas Wagner
    • 2
  1. 1.Universität Heidelberg, Inst. UmweltphysikHeidelbergDeutschland
  2. 2.Max-Planck-Institut für ChemieMainzDeutschland

Personalised recommendations