Advertisement

Atmosphärische Spurengase

  • Walter Roedel
  • Thomas Wagner
Chapter

Zusammenfassung

In diesem Kapitel wird ein Überblick über wichtige atmosphärische Spurengase, ausgewählte atmosphärische Reaktionszyklen sowie wichtige physikalisch-chemische Phänomene wie das stratosphärsiche Ozonloch oder Sommersmog gegeben.

Literatur

  1. Anderson JG (1975) The absolute concentration of O(3P) in the earth\9s stratosphere. Geophys Res Lett 2:231–234CrossRefGoogle Scholar
  2. Anderson JG, Margitan JJ, Stedman DH (1977) Atomic chlorine and the chlorine monoxid radical in the stratosphere: Three in situ observations. Science 198:501–503CrossRefGoogle Scholar
  3. Archer D (2007) Methane hydrate stability and anthropogenic climate change. Biogeosciences 4:521–544CrossRefGoogle Scholar
  4. Arnold F, Knop G (1989) Stratospheric nitric acid vapour measurements in the cold arctic vortex: Implications for nitric acid condensation. Nature (London) 338:746–749CrossRefGoogle Scholar
  5. Bacastow RB, Keeling CD, Whorf TP (1985) Seasonal amplitude increase in atmospheric CO2 concentrations at Mauna Loa, Hawai, 1959–1982. J Geophys Res 90:10529–10540CrossRefGoogle Scholar
  6. Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature (London) 329:408–414CrossRefGoogle Scholar
  7. Beirle S (2006) Average tropospheric NO2 distribution derived from SCIAMACHY observations. http://joseba.mpch-mainz.mpg.de/no2_nad.htm. Zugegriffen: 20. Febr. 2017
  8. Boden T, Marland G, Andres R (2011) Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751–2008. Oak Ridge National Laboratory, U. S. Department of Energy, Carbon Dioxide Information Analysis Center, Oak Ridge, TN, USA.,  https://doi.org/10.3334/CDIAC/00001_V2011, http://cdiac.ornl.gov/trends/emis/overview_2008.html. Zugegriffen: 10. Nov. 2011.
  9. Bojkov RD, Zerefos CS, Balis DS, Ziomas IG, Bais AF (1993) Record low total ozone during northern winters of 1992 and 1993. Geophys Res Lett 20:1351–1354CrossRefGoogle Scholar
  10. Borsdorff T, Tol P, Williams JE, de Laat J, aan de Brugh J, Nédélec P, Aben I, Landgraf J (2016) Carbon monoxide total columns from SCIAMACHY 2.3 µm atmospheric reflectance measurements: towards a full-mission data product (2003–2012). Atmos Meas Tech 9:227–248.  https://doi.org/10.5194/amt-9-227-2016CrossRefGoogle Scholar
  11. Borsdorff T, aan de Brugh J, Hu H, Nédélec P, Aben I, Landgraf J (2017) Carbon monoxide column retrieval for clear-sky and cloudy atmospheres: a full-mission data set from SCIAMACHY 2.3 µm reflectance measurements. Atmos Meas Tech Discuss.  https://doi.org/10.5194/amt-2016-355
  12. Bradshaw J, Davis D, Grodzinsky G, Smyth S, Newell R, Sandholm S, Liu S (2000) Observed distribution of nitrogen oxides in the remote free troposphere from the NASA global tropospheric experiment programs. Rev Geophys 38:611–116CrossRefGoogle Scholar
  13. Broecker WS, Takahashi T, Simpson HJ, Peng TH (1979) Fate of fossil carbon dioxide and the global carbon budget. Science 206:409–418CrossRefGoogle Scholar
  14. Brunner D, Staehelin J, Maeder JA, Wohltmann I, Bodeker GE (2006) Variability and trends in total and vertically resolved stratospheric ozone based on the CATO ozone data set. Atmos Chem Phys 6:4985–5008.  https://doi.org/10.5194/acp-6-4985-2006CrossRefGoogle Scholar
  15. Carslaw KS, Luo PB, Clegg SL, Peter T, Brimblecombe P, Crutzen PJ (1994) Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles. Geophys Res Lett 21:2479–2482CrossRefGoogle Scholar
  16. Chapman S (1930) A theory of upper atmospheric ozone. Quart J R Meteorol Soc 3: 103–125Google Scholar
  17. Chappellaz J, Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1990) Ice-core record of atmospheric methane over the past 160,000 years. Nature (London) 345:127–131CrossRefGoogle Scholar
  18. Ciais P, Tans P, White J, Trolier M, Francey R, Berry J, Randall D, Sellers P, Collatz J, Schimel DS (1995) Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA/CMDL global air sampling network. J Geophys Res 100:5051–5070Google Scholar
  19. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Hrsg) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  20. Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque J-F, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM (2014) Global distribution and trends of tropospheric ozone: an observation-based review. Elementa Sci Anthropocene 2:29.  https://doi.org/10.12952/journal.elementa.000029Google Scholar
  21. Crutzen PJ (1971) Ozone production rates in an oxygen-hydrogen-nitrogen oxid atmosphere. J Geophys Res 76:7311–7327CrossRefGoogle Scholar
  22. Crutzen PJ, Arnold F (1986) Nitric acid cloud formation in the cold Antarctic stratosphere: A major cause for the springtime ozone hole. Nature (London) 324:651–655CrossRefGoogle Scholar
  23. Crutzen PJ, Gidel LT (1983) A two-dimensional photochemical model of the atmosphere. 2: The tropospheric budgets of anthropogenic chlorocarbons CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone. J Geophys Res 88:6641–6661CrossRefGoogle Scholar
  24. Crutzen PJ, Howard CJ (1978) The effect of the HO2 + NO-reaction rate constant on one-dimensional model calculations of stratospheric ozone pertubations. Pure Appl Geophys 116:497–510CrossRefGoogle Scholar
  25. Deshler T, Adriani A, Gobbi GP, Hofmann DJ, Di Donfrancesco G, Johnson BJ (1992) Volcanic aerosol and ozone depletion within the antarctic polar vortex during the austral spring of 1991. Geophys Res Lett 19:1819–1822CrossRefGoogle Scholar
  26. Díaz S (1995) Elevated-CO2 responsiveness,interactions at the community level, and plant functional types. J. Biogeogr 22: 289-295CrossRefGoogle Scholar
  27. Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D (2011) Global atmospheric methane: Budget, changes and dangers. Philos Trans R Soc London Ser A 369:2058–2072CrossRefGoogle Scholar
  28. Dlugokencky EJ, Lang PM, Crotwell AM, Masarie KA (2012) Atmospheric methane dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1983–2011. https://www.esrl.noaa.gov/psd/iasoa/dataset_record/?datasetid=5069. Zugegriffen: 20. Febr. 2017
  29. Dodge MC (1977) Combined use of modeling techniques and smog chamber data to derive ozone-precursor relationships. International Conference on Photochemical Oxidant Pollution and its Control: Proceedings, Bd IIB, EPA/600/3-77-001b. U.S. Environmental Protection Agency, Research Triange Park, NC, S 881–889Google Scholar
  30. Drdla K, Tabazadeh A, Turco RP, Jacobson MZ (1994) Analysis of the physical state of one arctic polar stratospheric cloud based on observations. Geophys Res Lett 21: 2475–2478CrossRefGoogle Scholar
  31. Duncan BN, Logan JA, Bey I, Megretskaia IA, Yantosca RM, Novelli PC, JonesNB, Rinsland CP (2007) Global budget of CO, 1988–1997: Source estimates and validation with a global model. J Geophys Res 112:D22301Google Scholar
  32. Fahey DW, Kawa SR, Woodbridge EL, Tin P, Wilson JC, Jonsson HH, Dye JE, Baumgardner D, Borrmann S, Toohey DW, Avallone LM, Proffitt MH, Margitan J, Loewenstein M, Podolske JR, Sawalitsch RJ, Wofsy SC, Ko MKW, Anderson DE, Schoeberl MR, Chan KR (1993) In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion. Nature 363:509–514CrossRefGoogle Scholar
  33. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature (London) 315:207–210CrossRefGoogle Scholar
  34. Frankenberg C, Meirink F, Bergamaschi P, Goede APH, Heimann M, Körner S, Platt U, van Weele M, Wagner T (2006) Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004. J Geophys Res 111.  https://doi.org/10.1029/2005JD006235
  35. Frieler K, Rex M, Salawitch RJ, Canty T, Streibel M, Stimpfle RM, Pfeilsticker K, Dorf M, Weisenstein DK, Godin-Beekmann S (2005) Toward a better quantitative understanding of polar stratospheric ozone loss. Geophys Res Lett 33.  https://doi.org/10.1029/2005GL025466CrossRefGoogle Scholar
  36. Galbally IE, Roy CR (1980) Destruction of ozone at the earth’s surface. Quart J R Meteorol Soc 106:599–620CrossRefGoogle Scholar
  37. GEA (2006) Energy resources and potentials. In: Global Energy Assessment – Toward a Sustainable Future. Cambridge University Press, Cambridge, S 425–512Google Scholar
  38. Gleason JF, Bhartia BK, Herman JR, McPeters R, Newman P, Stolarski RS, Flynn L, Labow G, Larko D, Seftor C, Wellemeyer C, Komhyr WD, Miller AJ, Planet W (1993) Record low global ozone in 1992. Science 260:523–526CrossRefGoogle Scholar
  39. Goudriaan J (1992) Biosphere structure, carbon sequestering potential and the atmospheric 14C carbon record. J Exp Bot 43: 1111–1119CrossRefGoogle Scholar
  40. Graedel T E , Crutzen P J (1994) Chemie der Atmosphäre. Bedeutung für Klima und Umwelt. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  41. Hanson D, Mauersberger K (1988) Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere. Geophys Res Lett 15:855–858CrossRefGoogle Scholar
  42. Hofmann DJ (1987) Perturbations of the global atmosphere associated with the El Chichon volcanic eruption of 1982. Rev Geophys 25:743–759CrossRefGoogle Scholar
  43. Hofmann DJ, Solomon S (1989) Ozone destruction through heterogeneous chemistry following the eruption of El Chichon. J Geophys Res 94:5029–5041CrossRefGoogle Scholar
  44. Hofmann DJ, Oltmans SJ, Harris JM, Solomon S, Deshler T, Johnson BJ (1992) Observation and possible causes of new ozone depletion in Antarctica in 1991. Nature 359:283–287CrossRefGoogle Scholar
  45. Hofmann DJ, Oltmans SJ, Komhyr WD, Harris JM, Lathrop JA, Langford AO, Deshler T, Johnson BJ, Torres A, Matthews WA (1994) Ozone loss in the lower stratosphere over the United States in 1992–1993: Evidence for heterogeneous chemistry on the Pinatubo aerosol. Geophys Res Lett 21:65–68CrossRefGoogle Scholar
  46. Hofmann DJ, Oltmans J, Harris JM, Johnson BJ, Lathrop JA (1997) Ten years of ozone sonde measurements at the south pole: Implications for recovery of springtime Antarctic ozone. J Geophys Res 102:8931–8943CrossRefGoogle Scholar
  47. Hörmann C, Sihler H, Bobrowski N, Beirle S, Penning de Vries M, Platt U, Wagner T (2013) Systematic investigation of bromine monoxide in volcanic plumes from space by using the GOME-2 instrument. Atmos Chem Phys 13:4749–4781.  https://doi.org/10.5194/acp-13-4749- 2013
  48. Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9:5125–5142CrossRefGoogle Scholar
  49. Idso KE, Idso SB (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: A review of the past 10 years’ research. Agr Forest Meteorol 69: 153–203CrossRefGoogle Scholar
  50. Johnston HS (1971) Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173:517–522CrossRefGoogle Scholar
  51. Johnston HS (1975) Global ozone balance in the natural stratophere. Rev Geophys Space Phys 13:637–649CrossRefGoogle Scholar
  52. Johnston HS, Podolske J (1978) Interpretations of stratospheric chemistry. Rev Geophys Space Phys 16:491–519Google Scholar
  53. Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VM (1987) Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature (London) 329:403–408CrossRefGoogle Scholar
  54. Junge CE (1963) Air chemistry and radioactivity. Academic Press, New YorkGoogle Scholar
  55. Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observations and carbon cycle implications. In: Ehleringer JR, Cerling TE, Dearing MD (Hrsg) A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Springer, New York, S 83–113Google Scholar
  56. Keeling RF, Shertz S (1992) Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358:723–727CrossRefGoogle Scholar
  57. van Keulen H, van Laar HH, Louwerse W, Goudriaan J (1980) Physiological aspects of increased CO2 concentration. Experientia 36:787–792Google Scholar
  58. Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–349CrossRefGoogle Scholar
  59. Koike M, Jones YNB, Matthews WA, Johnston PV, McKenzie RL, Kinnison D, Rodriguez J (1994) Impact of Pinatubo aerosols on the partitioning between NO2 and HNO3. Geophys Res Lett 21:597–600Google Scholar
  60. Körner C, Arnone III JA (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257: 1672–1675CrossRefGoogle Scholar
  61. Lee C, Martin RV, van Donkelaar A, Lee H, Dickerson RR, Hains JC, Krotkov N, Richter A, Vinnikov K, Schwab JJ (2011) SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations. J Geophys Res 116.  https://doi.org/10.1029/2010JD014758
  62. Le Quéré C., Andres RJ, Boden T, Conway T, Houghton RA, House JI, Marland G, Peters GP, van der Werf GR, Ahlström A, Andrew RM, Bopp L, Canadell JG, Ciais P, Doney SC., Enright C, Friedlingstein P, Huntingford C, Jain AK, Jourdain C, Kato E, Keeling RF., Klein Goldewijk K, Levis S, Levy P, Lomas M, Poulter B, Raupach MR, Schwinger J, Sitch S, Stocker BD, Viovy N, Zaehle S, and Zeng N (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5: 165–185Google Scholar
  63. Levy H (1971) Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science 173: 141–143CrossRefGoogle Scholar
  64. Logan JA, Prather MJ, Wofsy SC, McElroy MB (1981) Tropospheric chemistry: A global perspective. J Geophys Res 86:7210–7254CrossRefGoogle Scholar
  65. London J (1980) Radiative energy sources and sinks in the stratosphere and mesosphere. In: Nicolet M, Aikin AC (Hrsg) Proceedings of the nato advanced study institute on atmospheric ozone: Its variations and human influences. US Dept of Transportations, Washington DC, S 703–721Google Scholar
  66. McElroy MB, Salawitch RJ, Wofsy SC, Logan JA (1986) Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature (London) 321:759–762CrossRefGoogle Scholar
  67. Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production, Nature, 363: 234–240CrossRefGoogle Scholar
  68. Molina LT, Molina MJ (1987) Production of Cl2O2 by the self reaction of ClO radical. J Phys Chem 91:433–436Google Scholar
  69. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethans: Chlorine atom catalyzed destruction of ozone. Nature (London) 249:810–812CrossRefGoogle Scholar
  70. Möller D (2003) Luft: Chemie, Physik, Biologie, Reinhaltung, Recht. de Gruyter, BerlinGoogle Scholar
  71. Nadelhoffer KJ, Emmett BA, Gundersen P, Kjnaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148CrossRefGoogle Scholar
  72. Neftel A, Oeschger H, Schwander J, Stauffer B, Zumbrunn R (1982) Ice core sample measurements give atmosphere CO2 content during the past 40000 yrs. Nature (London) 295:220–223CrossRefGoogle Scholar
  73. Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmosphere CO2 in the past two centuries. Nature (London) 315:45–47CrossRefGoogle Scholar
  74. Oeschger H, Siegenthaler U, Schotterer U, Guglemann A (1975) A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–192CrossRefGoogle Scholar
  75. Pawson S, Steinbrecht W, Charlton-Perez AJ, Fujiwara M, Karpechko AY, Petropavlovskikh I, Urban J, Weber M (2014) Update on global ozone: Past, present, and future. In: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55. World Meteorological Organization, Genf, SchweizGoogle Scholar
  76. Peng TH (1984) Invasion of fossil fuel CO2 into the ocean. In: Brutsaert W, Jirka GH (Hrsg) Gas transfer at water surfaces. Reidel, Dordrecht, S 515–523CrossRefGoogle Scholar
  77. Peterson BJ, Melillo JM (1985) The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B: 117–127CrossRefGoogle Scholar
  78. Prinn RG, Weiss RF, Fraser PJ et al (2000) A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J Geophys Res Atmos 105:17751–17792CrossRefGoogle Scholar
  79. Quay PD, Tilbrook B, Wong SC (1992) Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256:74–79CrossRefGoogle Scholar
  80. Reineke W und Schlömann M (2007) Umweltmikrobiologie. Spektrum Akademischer Verlag, MünchenGoogle Scholar
  81. Rex M, Salawitch RJ, Deckelmann H et al (2006) Arctic winter 2005: Implications for stratospheric ozone loss and climate change. Geophys Res Lett 33.  https://doi.org/10.1029/2006GL026731
  82. Rigby M, Prinn RG, Fraser PJ et al (2008) Renewed growth of atmospheric methane. Geophys Res Lett 35.  https://doi.org/10.1029/2008GL036037
  83. Riley JP, Chester R (1971) Introduction to marine chemistry. Academic Press, LondonGoogle Scholar
  84. Rodriguez JM, Ko MKW, Sze ND, Heisey CW (1994) Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo. Geophys Res Lett 21:209–212Google Scholar
  85. Schlesinger WH (1997) Biogeochemistry: An Analysis of Global Change. Academic Press, LondonGoogle Scholar
  86. Schoeberl MR, Bhartia PK, Hilsenrath E (1993) Tropical ozone loss following the eruption of Mt. Pinatubo. Geophys Res Lett 20:29–32CrossRefGoogle Scholar
  87. Seinfeld JH, Pandis SN (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climae Change. 2. Aufl. John Wiley & Sons, New JerseyGoogle Scholar
  88. Siegenthaler U (1983) Uptake of excess CO2 by an outcrop-diffusion model of the ocean. J Geophys Res 88:3599–3608CrossRefGoogle Scholar
  89. Siegenthaler U, Oeschger H (1978) Predicting future atmospheric carbon dioxide levels. Science 199:388–395CrossRefGoogle Scholar
  90. Solomon S, Garcia RR, Rowland FS, Wuebbles DJ (1986) On the depletion of antarctic ozone. Nature (London) 321:755–758CrossRefGoogle Scholar
  91. Stolarski RS, Bloomfield P, McPeters RD (1991) Total ozone trends deduced from Nimbus 7 TOMS data. Geophys Res Lett 18:1015–1018CrossRefGoogle Scholar
  92. Takahashi T (1979) Carbon dioxide chemistry in ocean water. In: Elliott WP, Machta L (Hrsg) Carbon dioxide effects research and assessment program. U. S. Dept. of Energy, Washington, S 63–71Google Scholar
  93. United Nations Environment Programme (UNEP) (2014) Sand, rarer than one thinks. Thematic focus: Ecosystem management, Environmental governance, Resource efficiency. http://www.unep.org/pdf/UNEP_GEAS_March_2014.pdf. Zugegriffen: 20. Febr. 2017
  94. Volz A, Kley D (1988) Ozone measurements made in the 19th century: An evaluation of the Montsouris series. Nature (London) 332:240–242CrossRefGoogle Scholar
  95. Wagener K (1979) The carbonate system of the ocean. In: Bolin B et al (Hrsg) The global carbon cycle. Wiley and Sons, New York, S 251–258Google Scholar
  96. Wagner T, Beirle S, Deutschmann T, Grzegorski M, Platt U (2008) Dependence of cloud properties derived from spectrally resolved visible satellite observations on surface temperature. Atmos Chem Phys, 8: 2299–2312CrossRefGoogle Scholar
  97. Wang Z, Sassen K (2000) Ozone destruction in continental stratus clouds: An aircraft case study. J Appl Meteorol 39:875–886CrossRefGoogle Scholar
  98. Warneck P (1988) Chemistry of the natural atmosphere. Academic Press, San DiegoGoogle Scholar
  99. Wennberg PO, Cohen RC, Stimpfle RM, Koplow JP, Anderson JG, Sawalitsch RJ, Fahey DW, Woodbridge EL, Keim ER, Gao RS, Webster CR, May RD, Toohey DW, Avallone LM, Proffitt MH, Loewenstein M, Podolske JR, Chan KR, Wofsy SC (1994) Removal of stratospheric O3 by radicals: In situ measurements of OH, HO2, NO, NO2, ClO and BrO. Science 266:398–404Google Scholar
  100. Wofsy SC, McElroy MB, Yung YL (1975) The chemistry of atmospheric bromine. Geophys Res Lett 2:215–218CrossRefGoogle Scholar
  101. Yung YL, Pinto JP, Watson RT, Sander SP (1980) Atmospheric bromine and ozone perturbations in the lower stratosphere. J Atmos Sci 37:339–353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Walter Roedel
    • 1
  • Thomas Wagner
    • 2
  1. 1.Universität Heidelberg, Inst. UmweltphysikHeidelbergDeutschland
  2. 2.Max-Planck-Institut für ChemieMainzDeutschland

Personalised recommendations