Advertisement

Diabetesdiagnostik einschließlich analytischer Verfahren zur Glukosebestimmung

  • Hans Günther Wahl
  • Theodor Koschinsky

Zusammenfassung

Dieses Kapitel gibt eine Übersicht über die derzeitigen Möglichkeiten des POCT zu Primärdiagnostik und Verlaufsmonitoring des Diabetes mellitus. Es werden die biochemischen Messprinzipien erläutert und die unterschiedlichen Glukose- und HbA1c-Messsysteme in ihren jeweiligen Leistungscharakteristiken erläutert. Dabei werden auch ausführlich das verwendete Probenmaterial, Einflussfaktoren und Interferenzen, sowie Evaluierung und Validierung der Verfahren besprochen. Aber auch andere klinische Aspekte der Diabetesdiagnostik wie z. B. die Blutzuckermessung an alternativen Körperstellen, werden gewürdigt.

Literatur

Zu Kap. 12.1 und 12.2

  1. 1.
    Asworth L, Gibb I, Alberti KG (1992) HemoCue: evaluation of a portable photometric system for determining glucose in whole blood. Clin Chem 38: 1479–1482Google Scholar
  2. 2.
    Bossuyt PM, Reitsma JB, Bruns DE et al. (2003) The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem 49: 7–18Google Scholar
  3. 3.
    Bossuyt PM, Reitsma JB, Bruns DE et al. (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Clin Chem 49: 1–6Google Scholar
  4. 4.
    CLSI (2008) Guidelines for comparison of glucose methodologies that use different sample types; Proposed Guideline. CLSI document POCT 6-P. Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  5. 5.
    D’Orazio P, Burnett RW, Fogh-Andersen N et al. (2005) The International Federation of Clinical Chemistry Scientific Division Working Group on Selective Electrodes and Point of Care Testing: Approved IFCC recommendation on reporting results for blood glucose (abbreviated). Clin Chem 51: 1573–1576Google Scholar
  6. 6.
    Dungan K, Chapman J, Braithwaite SS, Buse J (2007) Glucose measurements: Confounding issues in setting targets for inpatient management. Diabetes Care 30: 403–409Google Scholar
  7. 7.
    Janssen W, Harff G, Caers M, Schellekens A (1998) Positive interference of icodextrin metabolites in some enzymatic glucose methods. Clin Chem 44: 2379–2380Google Scholar
  8. 8.
    Karon BS, Griesmann L, Scott R et al. (2008) Evaluation of the impact of hematocrit and other interference on the accuracy of hospital-based glucose meters. Diabetes Technol Ther 10: 111–120Google Scholar
  9. 9.
    Kellerer M, Danne T (Hrsg.) (2010) Praxis-Leitlinien der Deutschen Diabetes-Gesellschaft; Diabetologie und Stoffwechsel 5(Suppl 2); Evidenzbasierte Leitlinien DDG, aktualisierte Version auf den Webseiten der DDG: www.deutsche-diabetes-gesellschaft.de/Evidenzbasierte Leitlinien/
  10. 10.
    Koschinsky T (2011) Genauigkeit der Blutglukosemessung – aktuelle Anforderungen und Interferenzen. Diabetologie Stoffw 6: 43–47Google Scholar
  11. 11.
    Koschinsky T, Junker R, Luppa PB, Schlebusch H. Improvement of therapeutic safety through standardized plasma calibration of blood glucose test systems at the point-of-care. J. Lab Med 2009;33: 349–52Google Scholar
  12. 12.
    Kost GJ, Nguyen TH, Tang Z (2000) Wholeblood glucose and lactate: trilayer biosensors, drug interference, metabolism, and practice guidelines. Arch Pathol Lab Med 124: 1128–1134Google Scholar
  13. 13.
    Kost GJ, Vu HT, Inn M et al. (2000) Multicenter study of whole-blood creatinine, total carbon dioxide content, and chemistry profiling for laboratory and point-of-care testing in critical care in the United States. Crit Care Med 28: 2379–2389Google Scholar
  14. 14.
    Mahoney J, Ellison J (2007) Assessing the quality of glucose monitor studies: a critical evaluation of published reports. Clin Chem 53: 1122–1128Google Scholar
  15. 15.
    Mahoney JJ, Ellison JM (2007) Assessing glucose monitor performance – a standardized approach. Diabetes Technology & Therapeutics 9: 545–552Google Scholar
  16. 16.
    NCCLS (2002) Point-of-care blood glucose testing in acute and chronic care facilities; Approved Guideline. NCCLS document C30–A2Google Scholar
  17. 17.
    Patrick L, Lynch M, O’Kane MJ (2002) Methemoglobin interferes with the HemoCue B-glucose Analyzer. Clin Chem 48: 581–583Google Scholar
  18. 18.
    Rao LV, Jakubiak F, Sidwell JS, Winkelmann JW, Snyder ML (2005) Accuracy evaluation of a new glucometer with automated hematocrit measurement and correction. Clin Chim Acta 356: 178–183Google Scholar
  19. 19.
    Tang Z, Du X, Loie RF, Kost GJ (2000) Effects of drugs on glucose measurements with handheld glucose meters and a portable glucose analyzer. Am J Clin Pathol 113: 75–86Google Scholar
  20. 20.
    Tang Z, Lee JH, Louie RF, Kost GJ (2000) Effects of different hematocrit levels on glucose measurements with handheld meters for point-of-care testing. Arch Pathol Lab Med 124: 1135–1140Google Scholar
  21. 21.
    Tang Z, Louie RF, Payes M, Chang KC, Kost GJ (2000) Oxygen effects on glucose measurements with a reference analyzer and three handheld meters. Diabetes Technol Ther 2: 349–362Google Scholar

Zu Kap. 12.3 bis 12.7

  1. 1.
    Arabadjief D, Nicholas JH (2006) Assessing glucose meter accuracy. Curr Med Res Opin 22: 2167–2174Google Scholar
  2. 2.
    Bina DM, Anderson RL, Johnson ML, Bergenstal RM, Kendall DM (2003) Clinical impact of prandial state, exercise, and site preparation on the equivalence of alternative-site blood glucose testing. Diabetes Care 26: 981–985Google Scholar
  3. 3.
    Brunkhorst FM, Engel C, Bloos F et al. (2008) German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358: 125–139Google Scholar
  4. 4.
    Brunkhorst FM, Wahl HG (2006) Blood glucose measurements in the critically ill: more than just a blood draw. Crit Care 10: 178Google Scholar
  5. 5.
    Bruns DE, Knowler WC (2009) Stabilization of glucose in blood samples: why it matters. Clin Chem 55: 850–852Google Scholar
  6. 6.
    Bundesärztekammer (2014) Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen (RiliBÄK 2014). Dtsch Ärztebl 111:A1583-A1618Google Scholar
  7. 7.
    Bürgi W (1974) Oraler Glukosetoleranztest: unterschiedlicher Verlauf der kapillären und venösen Belastungskurven. Schweiz Med Wochenschr 104: 1698–1699Google Scholar
  8. 8.
    Burrin JM, Alberti KG (1990) What is blood glucose: can it be measured? Diab Med 7: 199–206Google Scholar
  9. 9.
    Danne T, Mueller-Wieland D, Lackner K, Schleicher E (2009) Gemeinsame Empfehlungen der DDG und DGKL zur Qualitätssicherung der HbA1c-Messung. Dtsch Ärzteblatt 106 (33)Google Scholar
  10. 10.
    D‘Orazio P, Burnett RW, Fogh-Andersen N et al. (2005) Approved IFCC recommendation on reporting results for blood glucose (abbreviated). Clin Chem 51(9): 1573–1576Google Scholar
  11. 11.
    Dungan K, Chapman J, Braithwaite SS, Buse J (2007) Glucose measurements: Confounding issues in setting targets for inpatient management. Diabetes Care 30: 403–409Google Scholar
  12. 12.
    Finkielmann JD, Oyen LJ, Afessa B (2005) Agreement between bedside blood and plasma glucose measurement in the ICU setting. Chest 127: 1749–1751Google Scholar
  13. 13.
    Gambino R, Piscitelli J, Ackattupathil TA et al. (2009) Acidification of blood is superior to sodium fluoride alone as an inhibitor of glycolysis. Clin Chem 55: 1019–1021Google Scholar
  14. 14.
    Harrison JG (1995) Accuracy of fingerstick glucose values in shock patients. Am J Crit Care 4: 44–48Google Scholar
  15. 15.
    Haupt A, Berg B, Paschen P et al. (2005) The effects of skin temperature and testing site on blood glucose measurements taken by a modern blood glucose monitoring device. Diabetes Technol Ther 7: 597–601Google Scholar
  16. 16.
    Henrichs HR (2010) Kontinuierliche Glukosemessung (CGM) in der Gewebeflüssigkeit – Wissenschaftliche Bewertung von CGM und medizinische Beurteilung des Nutzens für die Diabetestherapie (AGDT-DDG-GKV CGM-Positionspapier). Im Internet: www.diabetes-technologie.de/vortraege/vortraege-2010.htm
  17. 17.
    Ingels C, Debaveye Y, Milants I et al. (2006) Strict blood glucose control with insulin during intensive care after cardiac surgery: impact on 4-years survival, dependency on medical care, and quality-of-life. Eur Heart J 27: 2716–2724Google Scholar
  18. 18.
    Jungheim K, Koschinsky T (2002) Glucose monitoring at the arm: risky delays of hypoglycemia and hyperglycemia detection. Diabetes Care 25: 956–960Google Scholar
  19. 19.
    Jungheim K, Koschinsky T (2002) Glucose monitoring at the thenar: evaluation of upper dermal blood glucose kinetics during rapid systemic blood glucose changes. Horm Metab Res 34: 325–329Google Scholar
  20. 20.
    Kellerer M, Danne T (Hrsg.) (2015) Praxis-Leitlinien der Deutschen Diabetes-Gesellschaft; Diabetologie und Stoffwechsel 10 (Suppl 2); Evidenzbasierte Leitlinien DDG, aktualisierte Version auf den Webseiten der DDG: www.deutsche-diabetes-gesellschaft.de/Evidenzbasierte Leitlinien
  21. 21.
    Kerner W, Brückel J (2015) Definition, Klassifikation und Diagnostik des Diabetes melitus. Diabetologie und Stoffwechsel 10 (Suppl 2) S 98–S101; Aktualisierte Version auf den Webseiten der DDG: www.deutsche-diabetes-gesellschaft.de/Evidenzbasierte Leitlinien/Praxisempfehlungen der Deutschen Diabetes Gesellschaft/ Definition
  22. 22.
    Khan AI, Vasquez Y, Gray J, Wians FH Jr, Kroll MH (2006) The variability of results between point-of-care testing glucose meters and the central laboratory analyzer. Arch Pathol Lab Med 130: 1527–1532Google Scholar
  23. 23.
    Kleinwechter H, Schaefer-Graf U (2011) Gestationsdiabetes mellitus; Diabetologie und Stoffwechsel 5 (Suppl); Evidenzbasierte Leitlinien DDG, aktualisierte Version auf den Webseiten der DDG: www.deutsche-diabetes-gesellschaft.de/Evidenzbasierte Leitlinien/Gestationsdiabetes mellitus
  24. 24.
    Koschinsky T, Jungheim K, Heinemann L (2003) Glucose sensors and the alternate site testing-like phenomenon: relationship between rapid blood glucose changes and glucose sensor signals. Diabetes Technol Ther 5: 829–842Google Scholar
  25. 25.
    Kulkarni A, Saxena M, Price G, O’Leary MJ, Jaques T, Myburgh JA (2005) Analysis of blood glucose measurements using capillary and arterial blood samples in intensive care patients. Intensive Care Med 31: 142–145Google Scholar
  26. 26.
    Kuwa K, Nakayama T, Hoshino T, Tominaga M (2001) Relationships of glucose concentrations in capillary whole blood, venous whole blood and venous plasma. Clin Chim Acta 307: 187–192Google Scholar
  27. 27.
    Lackner K, Luppa PB, Koschinsky T, Danne T (2009) Ein einheitlicher Kalibrationsbezug (Plasma statt Vollblut) bei der patientennahen Glukosebestimmung verbessert die Therapiesicherheit beim Einsatz von Glukosekonzentrationswert-abhängigen Therapiealgorithmen: Eine gemeinsame Initiative der DGKL, diabetesDE und der DDG.Internet: http://www.deutsche-diabetes-gesellschaft.de/redaktiion/news/POCT-Glukose_Plasmastandard_DGKL_diabetesDE_1209.pdf
  28. 28.
    Mikesh LM, Bruns DE (2008) Stabilization of glucose in blood specimen: mechanism of delay in fluoride inhibition of glycolysis. Clin Chem 54: 930–932Google Scholar
  29. 29.
    NICE-SUGAR Study Investigators, Finfer et al. (2009) Intensive versus Conventional Glucose Control in Critically Ill Patients N Engl J Med 360: 1283–1297Google Scholar
  30. 30.
    Rao LV, Jakubiak F, Sidwell JS, Winkelmann JW, Snyder ML (2005) Accuracy evaluation of a new glucometer with automated hematocrit measurement and correction. Clin Chim Acta 356: 178–183Google Scholar
  31. 31.
    Schetz M, Vanhorebeek I, Wouters PJ, Wilmer A, Van den Berghe G (2008) Tight blood glucose control Is renoprotective in critically ill patients. J Am Soc Nephrol 19: 571–578Google Scholar
  32. 32.
    The International Expert Committee (2009). International Expert Committee report on the role of the A1c assay in the diagnosis of diabetes. DiabetesCare 32: 1327–1334Google Scholar
  33. 33.
    Van den Berghe G (2008) Insulin therapy in the intensive care unit should be targeted to maintain blood glucose between 4.4 mmol/l and 6.1 mmol/l. Diabetologia 51: 911–915Google Scholar
  34. 34.
    Van den Berghe G, Wilmer A, Hermans G et al. (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354: 449–461Google Scholar
  35. 35.
    Van den Berghe G, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 1359–1367Google Scholar
  36. 36.
    Vanhorebeek I, Langouche L, Van den Berghe G (2007) Tight blood glucose control: what is the evidence? Crit Care Med 35 (9 Suppl): S496–S502Google Scholar
  37. 37.
    Lenters-Westra E, Slingerland RJ (2014) Three of 7 hemoglobin A1c point-of-care instruments do not meet generally accepted analytical performance criteria. Clin Chem 60:1062–1072Google Scholar
  38. 38.
    Kerner W, Freckmann G, Müller UA, Roth J, Schleicher E, Niederau C, Müller-Wieland D, Landgraf R, Heinemann L (2015) Positionspapier der Kommission für Labordiagnostik in der Diabetologie der DGKL und der DDG zur HbA1c-Messung. Diabetologie und Stoffwechsel 10: 329–3Google Scholar
  39. 39.
    International Organization for Standardization (2003) In Vitro Diagnostic Test Systems – Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus. EN ISO 15197:2003 (E). GenevaGoogle Scholar
  40. 40.
    International Organization for Standardization (2013) In Vitro Diagnostic Test Systems – Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus. ISO 15197:2013 (E). GenevaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Hans Günther Wahl
    • 1
  • Theodor Koschinsky
    • 2
  1. 1.Medizinisches Labor WahlLüdenscheidDeutschland
  2. 2.Vertreter der Deutschen Diabetes GesellschaftMünchenDeutschland

Personalised recommendations