Advertisement

Applying Data Analytic Techniques for Fault Detection

  • Ha Manh Tran
  • Sinh Van Nguyen
  • Son Thanh Le
  • Quy Tran Vu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10140)

Abstract

Monitoring events in communication and computing systems becomes more and more challenging due to the increasing complexity and diversity of these systems. Several supporting tools have been created to assist system administrators in monitoring an enormous number of events daily. The main function of these tools is to filter as many as possible events and present highly suspected events to the administrators for fault analysis, detection and report. While these suspected events appear regularly on large and complex systems, such as cloud computing systems, analyzing them consumes much time and effort. In this study, we propose an approach for evaluating the severity level of events using a classification decision tree. The approach exploits existing fault datasets and features, such as bug reports and log events to construct a decision tree that can be used to classify the severity level of other events. The administrators refer to the result of classification to determine proper actions for the suspected events with a high severity level. We have implemented and experimented the approach for various bug report and log event datasets. The experimental results reveal that the accuracy of classifying severity levels by using the decision trees is above 80%, and some detailed analyses are also provided.

Keywords

Event monitoring Fault data analysis Fault detection Classification decision tree Software bug report 

Notes

Acknowledgements

This research activity is funded by Vietnam National University in Ho Chi Minh City (VNU-HCM) under the grant number B2017-28-01 (the type-B project “Augmenting fault detection services on large and complex network systems using context-aware data analysis")

References

  1. 1.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)CrossRefGoogle Scholar
  2. 2.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. ACM Commun. 53(4), 50–58 (2010)CrossRefGoogle Scholar
  3. 3.
    Tran, H.M., Nguyen, S., Le, S.T., Vu, Q.T.: Fault data analytics using decision tree for fault detection. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE 2015. LNCS, vol. 9446, pp. 57–71. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26135-5_5 CrossRefGoogle Scholar
  4. 4.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall/CRC, New York (1984)MATHGoogle Scholar
  5. 5.
    Tran, H.M., Schönwälder, J.: Fault representation in case-based reasoning. In: Clemm, A., Granville, L.Z., Stadler, R. (eds.) DSOM 2007. LNCS, vol. 4785, pp. 50–61. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75694-1_5 CrossRefGoogle Scholar
  6. 6.
    Tran, H.M., Le, S.T., Ha, S.V.U., Huynh, T.K.: Software bug ontology supporting bug search on peer-to-peer networks. In: Proceedings of 6th International KES Conference on Agents and Multi-agent Systems Technologies and Applications (AMSTA 2013). IOS Press (2013)Google Scholar
  7. 7.
    Sinnamon, R.M., Andrews, J.D.: Fault tree analysis and binary decision diagrams. In: Proceedings in Reliability and Maintainability Annual Symposium, pp. 215–222 (1996)Google Scholar
  8. 8.
    Reay, K.A., Andrews, J.D.: A fault tree analysis strategy using binary decision diagrams. Reliab. Eng. Syst. Saf. 78(1), 45–56 (2002)CrossRefGoogle Scholar
  9. 9.
    Francis, P., Leon, D., Minch, M., Podgurski, A.: Tree-based methods for classifying software failures. In: Proceedings of 15th International Symposium on Software Reliability Engineering (ISSRE 2004), pp. 451–462, Washington, DC, USA. IEEE (2004)Google Scholar
  10. 10.
    Zheng, A.X., Lloyd, J., Brewer, E.: Failure diagnosis using decision trees. In: Proceedings of 1st International Conference on Autonomic Computing (ICAC 2004), Washington, DC, USA, pp. 36–43. IEEE Computer Society (2004)Google Scholar
  11. 11.
    Sama, M., Rosenblum, D.S., Wang, Z., Elbaum, S.: Model-based fault detection in context-aware adaptive applications. In: Proceedings of 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, New York, NY, USA, pp. 261–271. ACM (2008)Google Scholar
  12. 12.
    Xu, C., Cheung, S.C., Ma, X., Cao, C., Jian, L.: Detecting faults in context-aware adaptation. Int. J. Softw. Inf. 7(1), 85–111 (2013)Google Scholar
  13. 13.
    Moldovan, D., Copil, G., Truong, H.L., Dustdar, S.: MELA: monitoring and analyzing elasticity of cloud services. In: Proceedings of 5th International Conference on Cloud Computing, pp. 80–87. IEEE Press (2013)Google Scholar
  14. 14.
    Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. Chapman & Hall, New York (1984)MATHGoogle Scholar
  15. 15.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
  16. 16.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  17. 17.
    Kass, G.V.: An exploratory technique for investigating large quantities of categorical data. Appl. Stat. 29(2), 119–127 (1980)CrossRefGoogle Scholar
  18. 18.
    Mozilla bug tracking system. https://bugzilla.mozilla.org/. Accessed Jan 2015
  19. 19.
    Launchpad bugs. https://bugs.launchpad.net/. Accessed Jan 2015
  20. 20.
    Mantis bug tracker. https://www.mantisbt.org/. Accessed Jan 2015
  21. 21.
    Debian bug tracking system. https://www.debian.org/Bugs/. Accessed Jan 2015
  22. 22.
    Tran, H.M., Lange, C., Chulkov, G., Schönwälder, J., Kohlhase, M.: Applying semantic techniques to search and analyze bug tracking data. J. Netw. Syst. Manag. 17(3), 285–308 (2009)CrossRefGoogle Scholar
  23. 23.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATHGoogle Scholar
  24. 24.
    Oliphant, T.: A Guide to NumPy, vol. 1. Trelgol Publishing, Spanish Fork (2006)Google Scholar
  25. 25.
    Silva, F.B.: Learning SciPy for Numerical and Scientific Computing. Packt Publishing, Birmingham (2013)Google Scholar
  26. 26.
    Hall, L.O., Chawla, N., Bowyer, K.W.: Decision tree learning on very large data sets. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2579–2584. IEEE (1998)Google Scholar
  27. 27.
    The industry standard in IT infrastructure monitoring (1999). http://www.nagios.org/. Accessed Nov 2015
  28. 28.
    Ganglia monitoring system (2000). http://ganglia.info/. Accessed Nov 2015

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ha Manh Tran
    • 1
  • Sinh Van Nguyen
    • 1
  • Son Thanh Le
    • 1
  • Quy Tran Vu
    • 1
  1. 1.Computer Science and EngineeringInternational University - Vietnam National UniversityHo Chi Minh CityVietnam

Personalised recommendations