Advertisement

Introduction to surfaces at metal-electrolyte interfaces

  • M. NowickiEmail author
  • K. Wandelt
Part of the Condensed Matter book series (volume 45B)

Abstract

In this chapter an introduction to the metal-electrolyte interfaces is provided. A brief discussion on electrolyte properties, adsorption-desorption and electrochemical double layer are also given.

References

  1. 1.
    Zangwill, A.: Physics at Surfaces. Cambridge University Press, Cambridge (1996). ISBN:0-521-32147-6Google Scholar
  2. 2.
    Rhodin, T.N., Ertl, G. (eds.): The Nature of the Surface Chemical Bond. North-Holland, Amsterdam (1979). ISBN:0-444-85053-8Google Scholar
  3. 3.
    Desjonquères, M.C., Spanjaard, D.: Concepts in Surface Physics, 2nd edn. Springer, Heidelberg (1996). ISBN:3-540-58622-9CrossRefGoogle Scholar
  4. 4.
    Prutton, M.: Introduction to Surface Physics. Oxford Science Publications/Clarendon-Press, Oxford (1994). ISBN:9780198534761Google Scholar
  5. 5.
    Henzler, M., Göpel, W.: Oberflächenphysik des Festkörpers Teubner Studien-bücher. Teubner-Verlag, Stuttgart (1991). ISBN:3-519-03047-0CrossRefGoogle Scholar
  6. 6.
    Ibach, H.: Physics of Surfaces and Interfaces. Springer, Heidelberg (2006). ISBN:978-3-540-34709-5zbMATHGoogle Scholar
  7. 7.
    Wandelt, K. (ed.): Surface and Interface Science. Wiley, Weinheim. Concepts and Methods, vol. 1; Properties of Elemental Surfaces, vol. 2 (2012). ISBN:978-3-527-41156-6; Properties of Composite Surfaces: Alloys, Compounds, Semiconductors, vol. 3; Solid-Solid Interfaces, vol. 4 (2014). ISBN:978-3-527-41157-3; Solid-Gas Interactions I + II, vol. 5 & 6 (2015). ISBN:978-3-527-41158-0; Solid-Liquid and Biological Interfaces, vol. 7; Applications of Surface Science, vol. 8 (2018). ISBN:978-3-527-41159-7Google Scholar
  8. 8.
    Andersson, A., Morgner, H.: Liquid surfaces. In: Wandelt, K. (ed.) Surface and Interface Science Solid-Liquid and Biological Interfaces, vol. 7. Wiley, Weinheim (2017). ISBN:978-3-527-41159-7Google Scholar
  9. 9.
    Hashimoto, H., Ohno, A., Nakajima, K., Suzuji, M., Tsuji, H., Kimura, K.: Surface characterization of imidazolium ionic liquids by high-resolution Rutherford backscattering spectroscopy and X-ray photoelectron spectroscopy. Surf. Sci. 604, 464 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Somorjai, G.A.: Introduction to Surface Chemistry and Catalysis. Wiley, New York (1994). ISBN:0-471-03192-5Google Scholar
  11. 11.
    Adamson, A.W.: Physical Chemistry of Surfaces. Wiley, New York (1990). ISBN:0-471-61019-4Google Scholar
  12. 12.
    Rupprechter, G.: Surface science approach to heterogeneous catalysis. In: Wandelt, K. (ed.) Surface and Interface Science Solid-Gas Interfaces I, vol. 5, p. 459. Wiley, Weinheim (2015)CrossRefGoogle Scholar
  13. 13.
    Wandelt, K., Thurgate, S. (eds.): Solid-liquid Interfaces: Macroscopic Phenomena – Microscopic Understanding. Springer, Berlin (2003). ISBN:3-540-42583-7Google Scholar
  14. 14.
    Krischer, K., Savinova, E.R.: Fundamentals of electrocatalysis. In: Handbook of Heterogeneous Catalysis, p. 1873. Wiley (2008)Google Scholar
  15. 15.
    Maschmeyer, T., Rey, F., Sankar, G., Thomas, J.M.: Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature. 378, 159 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    Kang, S.M., Park, S., Kim, D., Park, S.Y., Ruoff, R.S., Lee, H.: Simultaneous reduction and surface functionalization of graphene oxide by Mussel-inspired chemistry. Adv. Funct. Mater. 21, 108 (2011)CrossRefGoogle Scholar
  17. 17.
    Budewski, E., Staikov, G., Lorenz, W.J.: Electrochemical Phase Formation and Growth. Wiley, Weinheim (1996). ISBN:3-527-29422-8CrossRefGoogle Scholar
  18. 18.
    Mohanty, U.S.: Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J. Appl. Electrochem. 41, 257 (2011)CrossRefGoogle Scholar
  19. 19.
    Magnussen, O.M.: Electrochemistry as a nanoscience. Electrochem. Soc. Interface. 15, 23 (2006)Google Scholar
  20. 20.
    Ming-Pei, I., Cheng-Yun, H., Wen-Tsan, I., Yuh-Shyong, Y.: Probing the sensitivity of nanowire-based biosensors using liquid-gating. Nanotechnology. 21, 425505 (2010)CrossRefGoogle Scholar
  21. 21.
    Andricacos, C., Uzoh, C., Dukovic, I.O., Horkans, I., Deligianni, H.: Damascene copper electroplating of chip interconnections. IBM J. Res. Dev. 42, 567 (1998)CrossRefGoogle Scholar
  22. 22.
  23. 23.
  24. 24.
    Schmickler, W., Santos, E.: Interfacial Electrochemistry, 2nd edn. Springer, Heidelberg (2010). ISBN:978-3-642-04936-1CrossRefGoogle Scholar
  25. 25.
    Heinz, K., Starke, U.: Surface crystallography. In: Wandelt, K. (ed.) Surface and Interface Science, vol. 2, p. 489. Wiley-VCH, Weinheim (2012)Google Scholar
  26. 26.
    Barth, J.V., Brune, H., Ertl, G., Behm, R.J.: Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B. 42, 9307 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    Schaefer, B., Nohlen, M., Wandelt, K.: Growth of Copper on Reconstructed Pt(100). J. Phys. Chem. B 108, 14663 (2004)CrossRefGoogle Scholar
  28. 28.
    Lang, N.D., Kohn, W.: Theory of metal surfaces: work function. Phys. Rev. B. 3, 1215 (1971)ADSCrossRefGoogle Scholar
  29. 29.
    Hölzl, J., Schulte, F.K.: Work function of metals. In: Solid Surface Physics, vol. 85, pp. 1–150. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  30. 30.
    Wandelt, K.: The local work function of thin films: definition and measurement. In: Wissmann, P. (ed.) Thin Metal Films and Gas Chemisorption Studies in Surface Science and Catalysis, pp. 280–368. Elsevier, Amsterdam (1987)CrossRefGoogle Scholar
  31. 31.
    Wandelt, K.: Work function changes due to alkali metal adsorption. In: Bonzel, H.P., Bradshaw, A.M., Ertl, G. (eds.) Physics and Chemistry of Alkali Metal Adsorption, vol. 18989, pp. 25–44. Elsevier, Amsterdam (1989)Google Scholar
  32. 32.
    von Helmholtz, H.L.F.: Studien über electrische Grenzschichten. Ann. Phys. 7, 337 (1879)zbMATHCrossRefGoogle Scholar
  33. 33.
    Gouy, M.: Sur la constitution de la charge électrique a la surface d’un électrolyte. C. R. Acad. Sci. 149, 654 (1909); J. Phys. 9, 457 (1910)zbMATHGoogle Scholar
  34. 34.
    Chapman, D.L.: A contribution to the theory of electrocapillarity. Philos. Mag. Series 6, 25, 475 (1913)zbMATHCrossRefGoogle Scholar
  35. 35.
    Stern, O.: Zur theorie der elektrolytischen Doppelschicht. Z. Elektrochem. 30, 508 (1924)Google Scholar
  36. 36.
    Grahame, D.C.: The Electrical Double Layer and the Theory of Electrocapillarity. Chem. Rev. 41, 441 (1947)CrossRefGoogle Scholar
  37. 37.
    Stojek, Z.: The electrical double layer and its structure. In: Scholz, F. (ed.) Electroanalytical Methods: Guide to Experiments and Applications, p. 3. Springer, Heidelberg (2010). ISBN:978-3-642-02914-1Google Scholar
  38. 38.
    Holze, R.: Surface and Interface Analysis – An Electrochemists Toolbox. Springer Series in Chemical Physics. Springer, Berlin/Heidelberg (2009). ISBN:978-3-540-00859-0Google Scholar
  39. 39.
    Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications, 2edn. Wiley&Sons, New York (2000). ISBN:0-471-04372-9Google Scholar
  40. 40.
    Christensen, P.A., Hamnett, A.: Techniques and Mechanisms in Electrochemistry. Blackie Academic & Professional, London (1994). ISBN:0-7514-0129-3Google Scholar
  41. 41.
    Zorki, C.G. (ed.): Handbook of Electrochemistry. Elsevier, Amsterdam/New York (2007)Google Scholar
  42. 42.
    Zaera, F.: Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012)CrossRefGoogle Scholar
  43. 43.
    MacDonald, D.D.: Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta. 51, 1376–1388 (2006)CrossRefGoogle Scholar
  44. 44.
    Lvovich, V.F.: Impedance Spectroscopy – Applications to Electrochemical and Dielectric Phenomena. Wiley (2012). ISBN:978-3-527-41156-6CrossRefGoogle Scholar
  45. 45.
    Bard, A.J., Mirkin, M.V. (eds.): Scanning Electrochemical Microscopy. Marcel Dekker, New York (2001). ISBN:0-8247-0471-1Google Scholar
  46. 46.
    Wittstock, G., Burchardt, M., Pust, S.E.: Applications of scanning electrochemical microscopy (SECM). In: Bhushan, B., Fuchs, H. (eds.) NanoScience and Technology – Applied Scanning Probe Methods VII. Springer (2007). ISBN:10-3-540-37320-9Google Scholar
  47. 47.
    Bard, A.J., Fan, F.-R., Kwak, J., Lev, O.: Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61, 132 (1989)CrossRefGoogle Scholar
  48. 48.
    Wieckowski, A., Korzeniewski, C., Braunschweig, B. (eds.): Vibrational Spectroscopy at Electrified Interfaces. Wiley, Hoboken (2013). ISBN:978-1-118-15717-6Google Scholar
  49. 49.
    Barrett, S.D., Lucas, C.A., Raval, R.: Photon spectroscopies. In: Wandelt, K. (ed.) Surface and Interface Science. Concepts and Methods, vol. 1. Wiley-VCH, Weinheim (2012). ISBN:978-3-527-41156-6Google Scholar
  50. 50.
    Griffiths, P., de Haseth, J.A.: Fourier Transform Infrared Spectrometry, 2nd edn. Wiley & Sons (2007). ISBN:0-471-19404-2CrossRefGoogle Scholar
  51. Faix, O.: Fourier transform infrared spectroscopy. In: Lin, S.Y., Dence, C.W. (eds.) Methods in Lignin Chemistry Springer Series in Wood Science, p. 83. ISBN:978-3-642-74065-7CrossRefGoogle Scholar
  52. 52.
    Beden, B., Lamy, C.: Spectroelectrochemistry – Theory and Practice. Plenum Press, New York (1988)Google Scholar
  53. 53.
    Lipkowski, L.J., Ross, P.N. (eds): Adsorption of Molecules at Metal Electrodes. VCH, New York (1992)Google Scholar
  54. 54.
    Hansen, W.N.: Electric Fields Produced by the Propagation of Plane Coherent Electromagnetic Radiation in a Stratified Medium. J. Opt. Soc. Am. 58, 380 (1968)ADSCrossRefGoogle Scholar
  55. 55.
    Lipert, R.J., Lamp, B.D., Porter, M.D.: In: Mirabella, F.M. (ed.) Modern Techniques in Applied Molecular Spectroscopy, p. 83. Wiley, Weinheim (1998)Google Scholar
  56. 56.
    Bjerke, A.E., Griffiths, P.R., Theiss, W.: Surface-Enhanced Infrared Absorption of CO on Platinized Platinum. Anal. Chem. 71, 1967 (1999)CrossRefGoogle Scholar
  57. 57.
    Weightman, P., Martin, D.S., Cole, R.J., Farrell, T.: Reflection anisotropy spectroscopy. Rep. Prog. Phys. 68, 1251–1341 (2005).  https://doi.org/10.1088/0034-4885/68/6/R01ADSCrossRefGoogle Scholar
  58. 58.
    Fahrenfort, J.: Attenuated total reflection: a new principle for the production of useful infra-red reflection spectra of organic compounds. Spectrochim. Acta. 17, 698–709 (1961)ADSCrossRefGoogle Scholar
  59. 59.
    Barrett, S.D., Lucas, C.A., Raval, R.: Photon spectroscopies. In: Wandelt, K. (ed.) Surface and Interface Science Concepts and Methods, vol. 1, Wiley (2012). ISBN:978-3-527-41156-6Google Scholar
  60. 60.
    Aroca, R.: Surface-Enhanced Vibrational Spectroscopy. Wiley (2006). ISBN:0-471-60731-2CrossRefGoogle Scholar
  61. 61.
    Campion, A., Kambhampati, P.: Surface enhanced Raman scattering. Chem. Soc. Rev. 27, 241 (1998)CrossRefGoogle Scholar
  62. 62.
    Higgins, D.A., Corn, R.M.: Second Harmonic Generation Studies of Adsorption at a Liquid-Liquid Electrochemical Interface. J. Phys. Chem. 97, 489 (1993)CrossRefGoogle Scholar
  63. 63.
    Piron, A., Brevet, P.F., Girault, H.H.: Surface second harmonic generation monitoring of the anion methyl orange during ion transfer reactions across a polarised water 1,2-dichloroethane interface. J. Electroanal. Chem. 483, 29 (2000)CrossRefGoogle Scholar
  64. 64.
    Tadjeddine, A., Lerille, A.: Interfacial Electrochemistry. Marcel Dekker, New York (1999)Google Scholar
  65. 65.
    Davidson, T., Pons, B.S., Bewick, A., Schmidt, P.P.: Vibrational spectroscopy of the electrode/electrolyte interface. Use of a Fourier Transform infrared spectroscopy. J. Electroanal. Chem. 125, 237 (1981)CrossRefGoogle Scholar
  66. 66.
    Zelenay, P., Horanyi, G., Rhee, C.K., Wieckowski, A.: Voltammetric and radioactive labeling studies of single crystal and polycrystalline rhodium electrodes in sulfate-containing electrolytes. J. Electroanal. Chem. 300, 499 (1991)CrossRefGoogle Scholar
  67. 67.
    Coutanceau, C., Hahn, F., Waszczuk, P., Wieckowski, A., Lamy, C., Leger, J.M.: Radioactive labeling study and FTIR measurements of methanol adsorption and oxidation on fuel cell catalysts. Fuel Cells. 2, 153 (2002)CrossRefGoogle Scholar
  68. 68.
    Buttry, D.A., Ward, M.D.: Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92(6), 1355 (1992)CrossRefGoogle Scholar
  69. 69.
    Kolb, D.: Electroreflectance spectroscopy in the study of metal electrolyte interfaces. J. Phys. Colloq. 44(C10), C10-137–C10-146 (1983).  https://doi.org/10.1051/jphyscol:19831029. jpa-00223486CrossRefGoogle Scholar
  70. 70.
    Klipstein, P.C., Tapster, P.R., Apsley, N., Anderson, D.A., Skolnick, M.S., Kerr, T.M., Woodbridge, K.: Electrorefelctance spectroscopy from quantum well structures in an electric field. J. Phys. C Solid State Phys. 19, 857 (1986)ADSCrossRefGoogle Scholar
  71. 71.
    Ho, K.M., Fu, C.L., Liu, S.H., Kolb, D.M., Piazza, G.: Observation of surface states at the metal-electrolyte interface by electroreflectance spectroscopy. J. Electroanal. Chem. 150, 235–240 (1983)CrossRefGoogle Scholar
  72. 72.
    Rubinstein, I. (ed.): Physical Electrochemistry: Science and Technology. Marcel Dekker, New York (1995). ISBN:0-8247-9452-4Google Scholar
  73. 73.
    Göpel, W., Ziegler, Chr.: Struktur der Materie: Grundlagen. Mikroskopie und Spektroskopie, Teubner (1994)Google Scholar
  74. 74.
    Zamlynny, V., Lipkowski, J.: In: Alkire, R.C., Kolb, D.M., Lipkowski, J., Ross, P.N. (eds.) Diffraction and Spectroscopic Methods in Electrochemistry, vol. 9. Wiley, Weinheim (2006)Google Scholar
  75. 75.
    Vlieg, E.: X-ray diffraction from surfaces and Interfaces. In: Wandelt, K. (ed.) Surface and Interface Science Concepts and Methods, vol. 1. Wiley (2012). ISBN:978-3-527-41156-6Google Scholar
  76. 76.
    Sakata, O., Nakamura, M.: Grazing incidence x-ray diffraction. In: Surface Science Techniques Springer Series in Surface Science, vol. 51, pp. 165–190. Springer, Heidelberg (2013). ISBN:978-3-642-34242-4CrossRefGoogle Scholar
  77. 77.
    Renaud, G., Lazzari, R., Leroy, F.: Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf. Sci. Rep. 64, 255 (2009)ADSCrossRefGoogle Scholar
  78. 78.
    Siegenthaler, H.: STM in electrochemistry. In: Wiesendanger, R., Güntherodt, H.-J. (eds.) Scanning Tunneling Microscopy II – Further Applications and Related Scanning Techniques Springer Series in Surface Science. Springer, Berlin/Heidelberg (1995)Google Scholar
  79. 79.
    Gentz, K., Wandelt, K.: Electrochemical scanning tunneling microscopy. Chim. Int. J. Chem. 66, 44 (2012)CrossRefGoogle Scholar
  80. 80.
    Gentz, K., Wandelt, K.: Electrochemical STM: atomic structure of metal/electrolyte interfaces. In: Sattler, K.D. (ed.) Fundamentals of Picoscience. CRC Press (2013). ISBN:9781466505094Google Scholar
  81. 81.
    Wilms, M., Kruft, M., Bermes, G., Wandelt, K.: A new and sophisticated electrochemical STM design for the investigation of potentiodynamic processes. Rev. Sci. Instrum. 70, 3641–3650 (1999)ADSCrossRefGoogle Scholar
  82. 82.
    Christensen, P.A., Hamnett, A.: Techniques and Mechanisms in Electrochemistry. Blackie Academic & Professional, London (1994)Google Scholar
  83. 83.
    Macpherson, J.V., Unwin, P.R., Hillier, A.C., Bard, A.J.: In-situ imaging of ionic crystal dissolution using an integrated electrochemical/AFM probe. J. Am. Chem. Soc. 118, 6445 (1996)CrossRefGoogle Scholar
  84. 84.
    O’Connell, M.A., Wain, A.J.: Combined electrochemical-topographical imaging: a critical review. Anal. Methods. 7, 6983 (2015)CrossRefGoogle Scholar
  85. 85.
    Ertl, G., Küppers, J.: Low Energy Electrons and Surface Chemistry. Wiley, Weinheim (1985)Google Scholar
  86. 86.
    Christmann, K.: Introduction to Surface Physical Chemistry. Springer, New York (1991). ISBN:978-3-7985-0858-3CrossRefGoogle Scholar
  87. 87.
    Bracco, G., Holst, B. (eds.): Surface Science Techniques Springer Series in Surface Science. Springer, Berlin/Heidelberg (2013). ISBN:978-3-642-34242-4Google Scholar
  88. 88.
    Osterwalder, J.: Photoelectron spectroscopy and diffraction. In: Wandelt, K. (ed.) Surface and Interface Science Concepts and Methods, vol. 1. Wiley (2012). ISBN:978-3-527-41156-6Google Scholar
  89. 89.
    Cardona, M., Ley, L. (eds.): Photoemission in Solids. Part I, General Principles. Part II, Case Studies. Topics in Applied Physics, vol. 26 & 27. Springer, Berlin/Heidelberg (1978/1979)Google Scholar
  90. 90.
    Hüfner, S.: Photoelectron Spectroscopy, Principles and Applications Springer Series in Solid-State Sciences, vol. 82. Springer, Berlin/Heidelberg/New York (1996). ISBN:3540418024CrossRefGoogle Scholar
  91. 91.
    Grant, J.T., Briggs, D.: Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. IM Publications, Chichester (2003). ISBN:1-901019-04-7Google Scholar
  92. 92.
    Briggs, D., Seah, M.P. (eds.): Practical Surface Analysis. Auger and X-ray Photoelectron Spectroscopy, vol. I. Wiley, Chichester (1990). ISBN:0471920819Google Scholar
  93. 93.
    Carlson, T.A.: Photoelectron and Auger Spectroscopy. Plenum Press, New York (1975). ISBN:0-306-33901-3CrossRefGoogle Scholar
  94. 94.
    Heinz, K.: Low energy electron diffraction. In: Wandelt, K. (ed.) Surface and Interface Science. Concepts and Methods, vol. 1. Wiley (2012). ISBN:978-3-527-41156-6Google Scholar
  95. 95.
    O’Connor, J.: Ion scattering spectroscopy. In: Wandelt, K. (ed.) Surface and Interface Science. Concepts and Methods, vol. 1. Wiley (2012). ISBN:978-3-527-41156-6Google Scholar
  96. 96.
    Redhead, P.A.: Thermal desorption of gases. Vacuum. 12, 203–211 (1962)ADSCrossRefGoogle Scholar
  97. 97.
    King, D.A.: Thermal desorption from metal surfaces: A review. Surf. Sci. 47, 384 (1975)ADSCrossRefGoogle Scholar
  98. 98.
    Güntherodt, H.-J., Wiesendanger, R. (eds.): Scanning Tunneling Microscopy I, II, III. Springer Series in Surface Science, vols. 20, 28, 29. Springer, Berlin/Heidelberg (1994/1995/1996). ISBN:978-3-642-9255-7, ISBN:978-3-642-79366-0, ISBN:978-3-642-80118-1Google Scholar
  99. 99.
    Chen, C.J.: Introduction to Scanning Tunneling Microscopy, 2nd edn. Oxford University Press (2008)Google Scholar
  100. 100.
    Meyer, E., Hug, H.J., Bennewitz, R.: Introduction to scanning tunneling microscopy. In: Scanning Probe Microscopy Springer Series of Advanced Texts in Physics. Springer, Berlin/Heidelberg (2004)Google Scholar
  101. 101.
    Forster, A., Hofer, W. (eds.): Scanning Probe Microscopy – Atomic Scale Engineering by Forces and Currents. Springer, New York (2006). ISBN:978-0-387-37231-0Google Scholar
  102. 102.
    Michaelson, H.B.: The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729 (1977).  https://doi.org/10.1063/1.323539ADSCrossRefGoogle Scholar
  103. 103.
    Schmickler, W.: Interfacial Electrochemistry. Oxford University Press, New York/Oxford (1996)Google Scholar
  104. 104.
    Gross, A.: Theory of solid/electrolyte interfaces. In: Wandelt, K. (ed.) Surface and Interface Science. Solid/Liquid and Biological Interfaces, vol. 7. Wiley, Weinheim (2018)Google Scholar
  105. 105.
    Groß, A.: Theory of solid/electrolyte interfaces (Psi-k Highlight #125, shortened version of a book chapter that will appear). In: Wandelt, K. (ed.) Surface and Interface Science. Solid/Liquid and Biological Interfaces, vol. 7. Wiley-VCH (2012). [Psi-k Highlight, Psi-k Webpage]Google Scholar
  106. 106.
    Richarz, F.: Elektrochemisch erzeugte Pt, Ru und PtRu – Elektroden: Charakterisierung und Elektrooxidation von Kohlenmonoxid, Fortschritt-Berichte VDI, Reihe 6 Energietechnik, No. 328, VDI-Verlag GmbH, Düsseldorf (1995). ISBN:3-18-332806-2Google Scholar
  107. 107.
    Kibler, L.A.: Preparation and characterization of noble metal single crystal electrode surfaces. https://www.uni.uni-ulm.de/fileadmin/website_ulm/nawi.inst.080/mitarbeiter/Kibler/KiblerSingleCrystals2003.pdf
  108. 108.
    Dakkouri, A.S., Kolb, D.M.: Reconstruction of gold surfaces. In: Wieckowski, A. (ed.) Interfacial Electrochemistry –Theory, Experiment and Applications, p. 151. Marcel Dekker, New York (1999. ISBN:0-8247-6000-x)Google Scholar
  109. 109.
    Goetting, L.B., Huang, B.M., Lister, T.E., Stimming, J.L.: Preparation of Au single crystals for studies of the ECALE deposition of CdTe. Electrochim. Acta. 40, 143 (1995)CrossRefGoogle Scholar
  110. 110.
    Broekmann, P., Wilms, M., Kruft, M., Stuhlmann, C., Wandelt, K.: In-situ STM investigation of specific anion adsorption on Cu(111). J. Electroanal. Chem. 467, 307 (1999)CrossRefGoogle Scholar
  111. 111.
    Zei, M.S., Ertl, G.: Structural changes of a Ru(0001) surface under the influence of electrochemical reactions. Phys. Chem. Chem. Phys. 2, 3855 (2000)CrossRefGoogle Scholar
  112. 112.
    Kong, D.S., Chen, S.H., Wan, L., Han, M.J.: The Preparation and in Situ Scanning Tunneling Microscopy Study of Fe(110) Surface. Langmuir. 19, 1954 (2003)CrossRefGoogle Scholar
  113. 113.
    Last, J.A., Ward, M.D.: Electrochemical annealing and friction anisotropy of domains in epitaxial molecular films. Adv. Mater. 8, 730 (1996)CrossRefGoogle Scholar
  114. 114.
    Giesen, M., Betramo, G., Dieluweit, S., Müller, J., Ibach, H., Schmickler, W.: The thermodynamics of electrochemical annealing. Surf. Sci. 595, 127 (2005)ADSCrossRefGoogle Scholar
  115. 115.
    Luque, N.B., Ibach, H., Potting, K., Schmickler, W.: A simulation of two-dimensional Ostwald ripening on silver electrodes. Electrochim. Acta. 55, 5411 (2010)CrossRefGoogle Scholar
  116. 116.
    Richarz, F., Wohlmann, B., Hoffschulz, H., Vogel, U., Wandelt, K.: Surface and electrochemical characterization of electrodeposited PtRu alloys. Surf. Sci. 335, 361 (1995)ADSCrossRefGoogle Scholar
  117. 117.
    Lebedev, M.V., Mayer, T., Jaegermann, W.: Sulfur adsorption at GaAs(1 0 0) from solution: role of the solvent in surface chemistry. Surf. Sci. 547, 171 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Institute of Experimental PhysicsUniversity of WroclawWroclawPoland
  2. 2.Institute of Physical and Theoretical ChemistryUniversity of BonnBonnGermany

Personalised recommendations