Advertisement

Structure and band structure of epitaxial graphene on hexagonal silicon carbide

  • C. BergerEmail author
  • E. H. Conrad
  • W. A. de Heer
Chapter
Part of the Condensed Matter book series (volume 45B)

Abstract

This chapter discusses the growth of epitaxial graphene on the C-face and Si-face of hexagonal silicon carbide and their electronic band structure.

References

  1. 1.
    Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., De Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B. 108, 19912–19916 (2004)CrossRefGoogle Scholar
  2. 2.
    de Heer, W.A., Berger, C., First, P.N.: Patterned thin films graphite devices and methods for making the same. US patent 7,015,142, (provisional Application No.60/477,997 filed June 12 2003, Issued March 21 2006)Google Scholar
  3. 3.
    Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science. 306, 666 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, Y.B., Small, J.P., Amori, M.E.S., Kim, P.: Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Boehm, H.P., Clauss, A., Hofmann, U., Fischer, G.O.: Dunnste Kohlenstoff-Folien. Z. Naturforsch. Pt. B. B17, 150–153 (1962)ADSCrossRefGoogle Scholar
  7. 7.
    Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and terminology of graphite-intercalation compounds. Carbon. 24, 241–245 (1986)CrossRefGoogle Scholar
  8. 8.
    Boehm, H.P.: Graphene-how a laboratory curiosity suddenly became extremely interesting. Angew. Chem. Int. Ed. 49, 9332–9335 (2010)CrossRefGoogle Scholar
  9. 9.
    Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Vizzini, S., Enriquez, H., Chiang, S., Soukiassian, P., Berger, C., de Heer, W.A., Lanzara, A., Conrad, E.H.: First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Ohta, T., Bostwick, A., McChesney, J.L., Seyller, T., Horn, K., Rotenberg, E.: Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Zhou, S.Y., Gweon, G.H., Graf, J., Fedorov, A.V., Spataru, C.D., Diehl, R.D., Kopelevich, Y., Lee, D.H., Louie, S.G., Lanzara, A.: First direct observation of Dirac fermions in graphite. Nat. Phys. 2, 595–599 (2006)CrossRefGoogle Scholar
  12. 12.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438, 197 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 438, 201 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Badami, D.V.: Graphitization of alpha-silicon carbide. Nature. 193, 569–570 (1962)ADSCrossRefGoogle Scholar
  15. 15.
    D.V. Badami, X-ray studies of graphite formed by decomposing sicilon carbide, Carbon 3 (1965) 53-57.CrossRefGoogle Scholar
  16. 16.
    Van Bommel, A.J., Crobeen, J.E., Van Tooren, A.: LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    Acheson, E.G.: Production of artificial crystalline carbonaceous materials : a method for making carborundum, an industrial abrasive called also silicon carbide. Carborundum Company, Pennsylvania (1893)Google Scholar
  18. 18.
    Zheludev, N.: The life and times of the LED – a 100-year history. Nat. Photonics. 1, 189–192 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    de Heer, W.A.: The invention of graphene electronics and the physics of epitaxial graphene on silicon carbide. Phys. Scr. T146, 014004 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Clark, D.T., Ramsay, E.P., Murphy, A.E., Smith, D.A., Thompson, R.F., Young, R.A.R., Cormack, J.D., Zhu, C., Finney, S., Fletcher, J.: High temperature silicon carbide CMOS integrated circuits. Mater. Sci. Forum. 679–680, 726–729 (2011)CrossRefGoogle Scholar
  21. 21.
    Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature. 490, 192–200 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Ferrari, A.C., Bonaccorso, F., Fal’ko, V., Novoselov, K.S., Roche, S., Boggild, P., Borini, S., Koppens, F.H.L., Palermo, V., Pugno, N., Garrido, J.A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhanen, T., Morpurgo, A., Coleman, J.N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G.F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A.N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G.M., Hee Hong, B., Ahn, J.-H., Min Kim, J., Zirath, H., van Wees, B.J., van der Zant, H., Occhipinti, L., Di Matteo, A., Kinloch, I.A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., Neil, S.R.T., Tannock, Q., Lofwander, T., Kinaret, J.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 7, 4598–4810 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and terminology of graphite-intercalation compounds (Iupac recommendations 1994). Pure Appl. Chem. 66, 1893–1901 (1994)CrossRefGoogle Scholar
  24. 24.
    Geim, A.K.: Graphene: status and prospects. Science. 324, 1530–1534 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Bianco, A., Cheng, H.M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C.R., Tascon, J.M.D., Zhang, J.: All in the graphene family – a recommended nomenclature for two-dimensional carbon materials. Carbon. 65, 1–6 (2013)CrossRefGoogle Scholar
  26. 26.
    Pauling, L.C.: The nature of the chemical bond: and the structure of molecules and crystals. An introduction to modern structural chemistry. Cornell University Press, New York (1948)Google Scholar
  27. 27.
    Kratschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R.: Solid C-60 – a new form of carbon. Nature. 347, 354–358 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    Ebbesen, T.W., Ajayan, P.M.: Large scale synthesis of carbon nanotubes. Nature. 358, 220–222 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    Girifalco, L.A., Lad, R.A.: Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J. Chem. Phys. 25, 693–697 (1956)ADSCrossRefGoogle Scholar
  30. 30.
    Paton, K.R., Varrla, E., Backes, C., Smith, R.J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O.M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O’Brien, S.E., McGuire, E.K., Sanchez, B.M., Duesberg, G.S., McEvoy, N., Pennycook, T.J., Downing, C., Crossley, A., Nicolosi, V., Coleman, J.N.: Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 3, 563–568 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    H.N. America, Aquadag® water based graphite coating/additive, 2015.Google Scholar
  33. 33.
    Gall, N.R., RutKov, E.V., Tontegode, A.Y.: Two dimensional graphite films on metals and their intercalation. Int. J. Mod. Phys. B. 11, 1865–1911 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    de Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., Conrad, E.H.: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. 108, 16900–16905 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Forbeaux, I., Themlin, J.M., Debever, J.M.: Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys. Rev. B. 58, 16396–16406 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    Xuekun, L., Minfeng, Y., Hui, H., Rodney, S.R.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology. 10, 269 (1999)CrossRefGoogle Scholar
  37. 37.
    Seo, J.W.T., Green, A.A., Antaris, A.L., Hersam, M.C.: High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. J. Phys. Chem. Lett. 2, 1004–1008 (2011)CrossRefGoogle Scholar
  38. 38.
    Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622–634 (1947)ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272–279 (1958)ADSCrossRefGoogle Scholar
  40. 40.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Gruneis, A., Attaccalite, C., Wirtz, L., Shiozawa, H., Saito, R., Pichler, T., Rubio, A.: Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. Phys. Rev. B. 78, 205425 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    McClure, J.W.: Band structure of graphite and de Haas-van Alphen effect. Phys. Rev. 108, 612–618 (1957)ADSCrossRefGoogle Scholar
  43. 43.
    Son, Y.W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature. 444, 347–349 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    Divincenzo, D.P., Mele, E.J.: Self-consistent effective-mass theory for intralayer screening in graphite-intercalation compounds. Phys. Rev. B. 29, 1685–1694 (1984)ADSCrossRefGoogle Scholar
  45. 45.
    Ando, T., Nakanishi, T., Saito, R.: Berry’s phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Jpn. 67, 2857–2862 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    Khveshchenko, D.V.: Ghost excitonic insulator transition in layered graphite. Phys. Rev. Lett. 87, 2468021–2468024 (2001)Google Scholar
  47. 47.
    Hwang, C., Siegel, D.A., Mo, S.K., Regan, W., Ismach, A., Zhang, Y.G., Zettl, A., Lanzara, A.: Fermi velocity engineering in graphene by substrate modification. Sci Rep-UK. 2, 590 (2012.) (594 pp)CrossRefGoogle Scholar
  48. 48.
    Ponomarenko, L.A., Gorbachev, R.V., Yu, G.L., Elias, D.C., Jalil, R., Patel, A.A., Mishchenko, A., Mayorov, A.S., Woods, C.R., Wallbank, J.R., Mucha-Kruczynski, M., Piot, B.A., Potemski, M., Grigorieva, I.V., Novoselov, K.S., Guinea, F., Fal’ko, V.I., Geim, A.K.: Cloning of Dirac fermions in graphene superlattices. Nature. 497, 594–597 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Berger, C., Song, Z.M., Li, X.B., Wu, X.S., Brown, N., Naud, C., Mayou, D., Li, T.B., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science. 312, 1191–1196 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    Wu, X.S., Li, X.B., Song, Z.M., Berger, C., de Heer, W.A.: Weak antilocalization in epitaxial graphene: evidence for chiral electrons. Phys. Rev. Lett. 98, 266405 (2007)CrossRefGoogle Scholar
  51. 51.
    Sadowski, M.L., Martinez, G., Potemski, M., Berger, C., de Heer, W.A.: Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97, 266405 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    Orlita, M., Faugeras, C., Plochocka, P., Neugebauer, P., Martinez, G., Maude, D.K., Barra, A.L., Sprinkle, M., Berger, C., de Heer, W.A., Potemski, M.: Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Faugeras, C., Nerriere, A., Potemski, M., Mahmood, A., Dujardin, E., Berger, C., de Heer, W.A.: Few-layer graphene on SiC, pyrolitic graphite, and graphene: a Raman scattering study. Appl. Phys. Lett. 92, 011914 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    Song, Y.J., Otte, A.F., Kuk, Y., Hu, Y.K., Torrance, D.B., First, P.N., de Heer, W.A., Min, H.K., Adam, S., Stiles, M.D., MacDonald, A.H., Stroscio, J.A.: High-resolution tunnelling spectroscopy of a graphene quartet. Nature. 467, 185–189 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    Martin, J., Akerman, N., Ulbricht, G., Lohmann, T., Smet, J.H., Von Klitzing, K., Yacoby, A.: Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008)CrossRefGoogle Scholar
  56. 56.
    Chen, J.H., Jang, C., Xiao, S.D., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008)CrossRefGoogle Scholar
  57. 57.
    Tan, Y.W., Zhang, Y., Bolotin, K., Zhao, Y., Adam, S., Hwang, E.H., Das Sarma, S., Stormer, H.L., Kim, P.: Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 99, 246803 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Ponomarenko, L.A., Jiang, D., Geim, A.K.: Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K.: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920–1923 (1996)ADSCrossRefGoogle Scholar
  62. 62.
    Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B. 54, 17954–17961 (1996)ADSCrossRefGoogle Scholar
  63. 63.
    Saddow, S.E., Anant Agarwal, A.: Advances in silicon carbide – processing and applications. Artech House, Boston (2004)Google Scholar
  64. 64.
    Bauer, A., Kräußlich, J., Dressler, L., Kuschnerus, P., Wolf, J., Goetz, K., Käckell, P., Furthmüller, J., Bechstedt, F.: High-precision determination of atomic positions in crystals: the case of 6H- and 4H-SiC. Phys. Rev. B. 57, 2647–2650 (1998)ADSCrossRefGoogle Scholar
  65. 65.
    Hass, J., de Heer, W.A., Conrad, E.H.: The growth and morphology of epitaxial multilayer graphene. J Phys-Condens Mat. 20, 323202 (2008)CrossRefGoogle Scholar
  66. 66.
    Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Rohrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    Lilov, S.K.: Study of the equilibrium processes in the gas phase during silicon carbide sublimation. Mater. Sci. Eng. B. 21, 65–69 (1993)CrossRefGoogle Scholar
  68. 68.
    Robinson, J.A., Hollander, M., LaBella, M., Trumbull, K.A., Cavalero, R., Snyder, D.W.: epitaxial graphene transistors: enhancing performance via hydrogen intercalation. Nano Lett. 11, 3875–3880 (2011)ADSCrossRefGoogle Scholar
  69. 69.
    Yager, T., Lartsev, A., Yakimova, R., Lara-Avila, S., Kubatkin, S.: Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC. Carbon. 87, 409–414 (2015)CrossRefGoogle Scholar
  70. 70.
    Dimitrakopoulos, C., Lin, Y.M., Grill, A., Farmer, D.B., Freitag, M., Sun, Y.N., Han, S.J., Chen, Z.H., Jenkins, K.A., Zhu, Y., Liu, Z.H., McArdle, T.J., Ott, J.A., Wisnieff, R., Avouris, P.: Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. J Vac Sci Technol B. 28, 985–992 (2010)CrossRefGoogle Scholar
  71. 71.
    Yakimova, R., Iakimov, T., Yazdi, G.R., Bouhafs, C., Eriksson, J., Zakharov, A., Boosalis, A., Schubert, M., Darakchieva, V.: Morphological and electronic properties of epitaxial graphene on SiC. Physica B. 439, 54–59 (2014)ADSCrossRefGoogle Scholar
  72. 72.
    Tromp, R.M., Hannon, J.B.: Thermodynamics and kinetics of graphene growth on SiC(0001). Phys. Rev. Lett. 102, 106104 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    Strupinski, W., Grodecki, K., Wysmolek, A., Stepniewski, R., Szkopek, T., Gaskell, P.E., Gruneis, A., Haberer, D., Bozek, R., Krupka, J., Baranowski, J.M.: Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett. 11, 1786–1791 (2011)ADSCrossRefGoogle Scholar
  74. 74.
    Moreau, E., Ferrer, F.J., Vignaud, D., Godey, S., Wallart, X.: Graphene growth by molecular beam epitaxy using a solid carbon source. Phys Status Solid A. 207, 300–303 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    Michon, A., Vezian, S., Roudon, E., Lefebvre, D., Zielinski, M., Chassagne, T., Portail, M.: Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition. J. Appl. Phys. 113, 203501 (2013)ADSCrossRefGoogle Scholar
  76. 76.
    Lafont, F., Ribeiro-Palau, R., Kazazis, D., Michon, A., Couturaud, O., Consejo, C., Chassagne, T., Zielinski, M., Portail, M., Jouault, B., Schopfer, F., Poirier, W.: Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide. Nat. Commun. 6, 6806 (2015)ADSCrossRefGoogle Scholar
  77. 77.
    Walter, A.L., Nie, S., Bostwick, A., Kim, K.S., Moreschini, L., Chang, Y.J., Innocenti, D., Horn, K., McCarty, K.F., Rotenberg, E.: Electronic structure of graphene on single-crystal copper substrates. Phys. Rev. B. 84, 195443 (2011)ADSCrossRefGoogle Scholar
  78. 78.
    Emtsev, K.V., Speck, F., Seyller, T., Ley, L., Riley, J.D.: Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys. Rev. B. 77, 155303 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    Rollings, E., Gweon, G.H., Zhou, S.Y., Mun, B.S., McChesney, J.L., Hussain, B.S., Fedorov, A., First, P.N., de Heer, W.A., Lanzara, A.: Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids. 67, 2172–2177 (2006)ADSCrossRefGoogle Scholar
  80. 80.
    Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Controlling the electronic structure of bilayer graphene. Science. 313, 951–954 (2006)ADSCrossRefGoogle Scholar
  81. 81.
    Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Dos Santos, J.M.B.L., Nilsson, J., Guinea, F., Geim, A.K., Castro Neto, A.H.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)ADSCrossRefGoogle Scholar
  82. 82.
    Coletti, C., Forti, S., Principi, A., Emtsev, K.V., Zakharov, A.A., Daniels, K.M., Daas, B.K., Chandrashekhar, M.V.S., Ouisse, T., Chaussende, D., MacDonald, A.H., Polini, M., Starke, U.: Revealing the electronic band structure of trilayer graphene on SiC: an angle-resolved photoemission study. Phys. Rev. B. 88, 155439 (2013)ADSCrossRefGoogle Scholar
  83. 83.
    Bostwick, A., Speck, F., Seyller, T., Horn, K., Polini, M., Asgari, R., MacDonald, A.H., Rotenberg, E.: Observation of plasmarons in quasi-freestanding doped graphene. Science. 328, 999–1002 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    Bostwick, A., Ohta, T., Seyller, T., Horn, K., Rotenberg, E.: Quasiparticle dynamics in graphene. Nat. Phys. 3, 36–40 (2007)CrossRefGoogle Scholar
  85. 85.
    Zhou, S.Y., Siegel, D.A., Fedorov, A.V., Lanzara, A.: Kohn anomaly and interplay of electron-electron and electron-phonon interactions in epitaxial graphene. Phys. Rev. B. 78, 193404 (2008)ADSCrossRefGoogle Scholar
  86. 86.
    Basov, D.N., Fogler, M.M., Lanzara, A., Wang, F., Zhang, Y.B.: Colloquium: graphene spectroscopy. Rev. Mod. Phys. 86, 959–994 (2014)ADSCrossRefGoogle Scholar
  87. 87.
    Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.H., Guinea, F., Castro Neto, A.H., Lanzara, A.: Substrate induced band gap opening in epitaxial graphene. Nat. Mater. 6, 770 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    Varchon, F., Feng, R., Hass, J., Li, X., Ngoc Nguyen, B., Naud, C., Mallet, P., Veuillen, J.-Y., Berger, C., Conrad, E.H., Magaud, L.: Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. Phys. Rev. Lett. 99, 126805 (2007)ADSCrossRefGoogle Scholar
  89. 89.
    Mattausch, A., Pankratov, O.: Ab initio study of graphene on SiC. Phys. Rev. Lett. 99, 076802 (2007)ADSCrossRefGoogle Scholar
  90. 90.
    Rutter, G.M., Guisinger, N.P., Crain, J.N., Jarvis, E.A.A., Stiles, M.D., Li, T., First, P.N., Stroscio, J.A.: Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Phys. Rev. B. 76, 235416 (2007)ADSCrossRefGoogle Scholar
  91. 91.
    Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A.A., Starke, U.: Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009)ADSCrossRefGoogle Scholar
  92. 92.
    P. Mallet, F. Varchon, C. Naud, L. Magaud, C. Berger, J.-Y. Veuillen, Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy, Phys. Rev. B (Rapid Commmun.), 76 (2007) 041403(R).ADSCrossRefGoogle Scholar
  93. 93.
    Owman, F., Martensson, P.: The SiC(0001) 6√3 × 6√3 reconstruction studied with STM and LEED. Surf. Sci. 369, 126–136 (1996)ADSCrossRefGoogle Scholar
  94. 94.
    Li, L., Tsong, I.S.T.: Atomic structures of 6H-SiC(0001) and (0001) surfaces. Surf. Sci. 351, 141–148 (1996)ADSCrossRefGoogle Scholar
  95. 95.
    Tsukamoto, T., Hirai, M., Kusaka, M., Iwami, M., Ozawa, T., Nagamura, T., Nakata, T.: Annealing effect on surfaces of 4H(6H)-SiC(0001)Si face. Appl. Surf. Sci. 113, 467–471 (1997)ADSCrossRefGoogle Scholar
  96. 96.
    Chang, C.S., Tsong, I.S.T., Wang, Y.C., Davis, R.F.: Scanning tunneling microscopy and spectroscopy of cubic beta-Sic(111) surfaces. Surf. Sci. 256, 354–360 (1991)ADSCrossRefGoogle Scholar
  97. 97.
    Chen, W., Xu, H., Liu, L., Gao, X.Y., Qi, D.C., Peng, G.W., Tan, S.C., Feng, Y.P., Loh, K.P., Wee, A.T.S.: Atomic structure of the 6H-SiC(0001) nanomesh. Surf. Sci. 596, 176–186 (2005)ADSCrossRefGoogle Scholar
  98. 98.
    Riedl, C., Starke, U., Bernhardt, J., Franke, M., Heinz, K.: Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B. 76, 245406 (2007)ADSCrossRefGoogle Scholar
  99. 99.
    Charrier, A., Coati, A., Argunova, T., Thibaudau, F., Garreau, Y., Pinchaux, R., Forbeaux, I., Debever, J.M., Sauvage-Simkin, M., Themlin, J.M.: Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. J. Appl. Phys. 92, 2479–2484 (2002)ADSCrossRefGoogle Scholar
  100. 100.
    Emery, J.D., Detlefs, B., Karmel, H.J., Nyakiti, L.O., Gaskill, D.K., Hersam, M.C., Zegenhagen, J., Bedzyk, M.J.: Chemically resolved interface structure of epitaxial graphene on SiC(0001). Phys. Rev. Lett. 111, 215501 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    Forti, S., Starke, U.: Epitaxial graphene on SiC: from carrier density engineering to quasi-free standing graphene by atomic intercalation. J. Phys. D: Appl. Phys. 47, 094013 (2014)ADSCrossRefGoogle Scholar
  102. 102.
    Emery, J.D., Wheeler, V.H., Johns, J.E., McBriarty, M.E., Detlefs, B., Hersam, M.C., Gaskill, D.K., Bedzyk, M.J.: Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 105, 161602 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    Silly, M.G., D’Angelo, M., Besson, A., Dappe, Y.J., Kubsky, S., Li, G., Nicolas, F., Pierucci, D., Thomasset, M.: Electronic and structural properties of graphene-based metal-semiconducting heterostructures engineered by silicon intercalation. Carbon. 76, 27–39 (2014)CrossRefGoogle Scholar
  104. 104.
    Kubler, L., Ait-Mansour, K., Diani, M., Dentel, D., Bischoff, J.L., Derivaz, M.: Bidimensional intercalation of Ge between SiC(0001) and a heteroepitaxial graphite top layer. Phys. Rev. B. 72, 115319 (2005)ADSCrossRefGoogle Scholar
  105. 105.
    Oliveira, M.H., Schumann, T., Fromm, F., Koch, R., Ostler, M., Ramsteiner, M., Seyller, T., Lopes, J.M.J., Riechert, H.: Formation of high-quality quasi-free-standing bilayer graphene on SiC(0001) by oxygen intercalation upon annealing in air. Carbon. 52, 83–89 (2013)CrossRefGoogle Scholar
  106. 106.
    Ostler, M., Fromm, F., Koch, R.J., Wehrfritz, P., Speck, F., Vita, H., Bottcher, S., Horn, K., Seyller, T.: Buffer layer free graphene on SiC(0001) via interface oxidation in water vapor. Carbon. 70, 258–265 (2014)CrossRefGoogle Scholar
  107. 107.
    Premlal, B., Cranney, M., Vonau, F., Aubel, D., Casterman, D., De Souza, M.M., Simon, L.: Surface intercalation of gold underneath a graphene monolayer on SiC(0001) studied by scanning tunneling microscopy and spectroscopy. Appl. Phys. Lett. 94, 263115 (2009)ADSCrossRefGoogle Scholar
  108. 108.
    Virojanadara, C., Watcharinyanon, S., Zakharov, A.A., Johansson, L.I.: Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B. 82, 205402 (2010)ADSCrossRefGoogle Scholar
  109. 109.
    Xia, C., Johansson, L.I., Niu, Y.R., Zakharov, A.A., Janzen, E., Virojanadara, C.: High thermal stability quasi-free-standing bilayer graphene formed on 4H-SiC(0001) via platinum intercalation. Carbon. 79, 631–635 (2014)CrossRefGoogle Scholar
  110. 110.
    Wong, S.L., Huang, H., Wang, Y.Z., Cao, L., Qi, D.C., Santoso, I., Chen, W., Wee, A.T.S.: Quasi-free-standing epitaxial graphene on SiC (0001) by fluorine intercalation from a molecular source. ACS Nano. 5, 7662–7668 (2011)CrossRefGoogle Scholar
  111. 111.
    Palacio, I., Celis, A., Nair, M.N., Gloter, A., Zobelli, A., Sicot, M., Malterre, D., Nevius, M.S., de Heer, W.A., Berger, C., Conrad, E.H., Taleb-Ibrahimi, A., Tejeda, A.: Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap. Nano Lett. (2014)Google Scholar
  112. 112.
    Hass, J., Millan-Otoya, J.E., First, P.N., Conrad, E.H.: Interface structure of epitaxial graphene grown on 4H-SiC(0001). Phys. Rev. B. 78, 205424 (2008)ADSCrossRefGoogle Scholar
  113. 113.
    T. Schumann, M. Dubslaff, M.H. Oliveira, M. Hanke, J.M.J. Lopes, H. Riechert, Effect of buffer layer coupling on the lattice parameter of epitaxial graphene on SiC(0001)Phys. Rev. B, 90 (2014) 041403(R).ADSCrossRefGoogle Scholar
  114. 114.
    Kim, S., Ihm, J., Choi, H.J., Son, Y.W.: Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 100, 176802 (2008)ADSCrossRefGoogle Scholar
  115. 115.
    Varchon, F., Mallet, P., Veuillen, J.Y., Magaud, L.: Ripples in epitaxial graphene on the Si-terminated SiC(0001) surface. Phys. Rev. B. 77, 235412 (2008)ADSCrossRefGoogle Scholar
  116. 116.
    V. Borovikov, A. Zangwill, Step bunching of vicinal 6H-SiC{0001} surfaces, Phys. Rev. B, 79 (2009) 121406(R).ADSCrossRefGoogle Scholar
  117. 117.
    Ming, F., Zangwill, A.: Model and simulations of the epitaxial growth of graphene on non-planar 6H-SiC surfaces. J. Phys. D: Appl. Phys. 45, 154007 (2012)ADSCrossRefGoogle Scholar
  118. 118.
    Mahmood, A., Mallet, P., Veuillen, J.Y.: Quasiparticle scattering off phase boundaries in epitaxial graphene. Nanotechnology. 23, 055706 (2012)ADSCrossRefGoogle Scholar
  119. 119.
    Huang, H., Chen, W., Chen, S., Wee, A.T.S.: Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano. 2, 2513–2518 (2008)CrossRefGoogle Scholar
  120. 120.
    T. Ohta, N.C. Bartelt, S. Nie, K. Thurmer, G.L. Kellogg, Role of carbon surface diffusion on the growth of epitaxial graphene on SiC, Phys. Rev. B, 81 (2010) 121411(R).ADSCrossRefGoogle Scholar
  121. 121.
    Xian, L.D., Chou, M.Y.: Diffusion of Si and C atoms on and between graphene layers. J. Phys. D: Appl. Phys. 45, 455309 (2012)CrossRefGoogle Scholar
  122. 122.
    Muehlhoff, L., Choyke, W.J., Bozack, M.J., Yates, J.T.: Comparative electron spectroscopic studies of surface segregation on Sic(0001) and Sic(0001bar). J. Appl. Phys. 60, 2842–2853 (1986)ADSCrossRefGoogle Scholar
  123. 123.
    Wu, X.S., Hu, Y.K., Ruan, M., Madiomanana, N.K., Hankinson, J., Sprinkle, M., Berger, C., de Heer, W.A.: Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Appl. Phys. Lett. 95, 223108 (2009)ADSCrossRefGoogle Scholar
  124. 124.
    Camara, N., Huntzinger, J.R., Rius, G., Tiberj, A., Mestres, N., Perez-Murano, F., Godignon, P., Camassel, J.: Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6H-SiC. Phys. Rev. B. 80, 125410 (2009)ADSCrossRefGoogle Scholar
  125. 125.
    T.C. Cai, Z.Z. Jia, B.M. Yan, D.P. Yu, X.S. Wu, Hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC, Appl. Phys. Lett., 106 (2015) 013106.ADSCrossRefGoogle Scholar
  126. 126.
    Veuillen, J.Y., Hiebel, F., Magaud, L., Mallet, P., Varchon, F.: Interface structure of graphene on SiC: an ab initio and STM approach. J. Phys. D: Appl. Phys. 43, 374008 (2010)CrossRefGoogle Scholar
  127. 127.
    P.N. First, Private communicationGoogle Scholar
  128. 128.
    Miller, D.L., Kubista, K.D., Rutter, G.M., Ruan, M., de Heer, W.A., Kindermann, M., First, P.N., Stroscio, J.A.: Real-space mapping of magnetically quantized graphene states. Nat. Phys. 6, 811–817 (2010)CrossRefGoogle Scholar
  129. 129.
    Hass, J., Varchon, F., Millan-Otoya, J.E., Sprinkle, M., Sharma, N., De Heer, W.A., Berger, C., First, P.N., Magaud, L., Conrad, E.H.: Why multilayer graphene on 4H-SiC(000(1)over-bar) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008)ADSCrossRefGoogle Scholar
  130. 130.
    Zhang, R., Dong, Y.L., Kong, W.J., Han, W.P., Tan, P.H., Liao, Z.M., Wu, X.S., Yu, D.P.: Growth of large domain epitaxial graphene on the C-face of SiC. J. Appl. Phys. 112, 104307 (2012)ADSCrossRefGoogle Scholar
  131. 131.
    Hicks, J., Shepperd, K., Wang, F., Conrad, E.H.: The structure of graphene grown on the SiC (000(1)over-bar) surface. J. Phys. D: Appl. Phys. 45, 154002 (2012)ADSCrossRefGoogle Scholar
  132. 132.
    Hibino, H., Kageshima, H., Maeda, F., Nagase, M., Kobayashi, Y., Yamaguchi, H.: Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B. 77, 075413 (2008)ADSCrossRefGoogle Scholar
  133. 133.
    Yu, X.Z., Hwang, C.G., Jozwiak, C.M., Kohl, A., Schmid, A.K., Lanzara, A.: New synthesis method for the growth of epitaxial graphene. J Electron Spectrosc. 184, 100–106 (2011)CrossRefGoogle Scholar
  134. 134.
    Wang, F., Liu, G., Rothwell, S., Nevius, M.S., Mathieu, C., Barrett, N., Sala, A., Mentes, T.O., Locatelli, A., Cohen, P.I., Feldman, L.C., Conrad, E.H.: Pattern induced ordering of semiconducting graphene ribbons grown from nitrogen-seeded SiC. Carbon. 82, 360–367 (2015)CrossRefGoogle Scholar
  135. 135.
    Sprinkle, M., Ruan, M., Hu, Y., Hankinson, J., Rubio-Roy, M., Zhang, B., Wu, X., Berger, C., de Heer, W.A.: Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5, 727–731 (2010)ADSCrossRefGoogle Scholar
  136. 136.
    Baringhaus, J., Ruan, M., Edler, F., Tejeda, A., Sicot, M., Taleb-Ibrahimi, A., Li, A.P., Jiang, Z.G., Conrad, E.H., Berger, C., Tegenkamp, C., de Heer, W.A.: Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature. 506, 349–354 (2014)ADSCrossRefGoogle Scholar
  137. 137.
    Hu, Y., Ruan, M., Guo, Z.L., Dong, R., Palmer, J., Hankinson, J., Berger, C., de Heer, W.A.: Structured epitaxial graphene: growth and properties. J. Phys. D: Appl. Phys. 45, 154010 (2012)ADSCrossRefGoogle Scholar
  138. 138.
    Fukidome, H., Kawai, Y., Fromm, F., Kotsugi, M., Handa, H., Ide, T., Ohkouchi, T., Miyashita, H., Enta, Y., Kinoshita, T., Seyller, T., Suemitsu, M.: Precise control of epitaxy of graphene by microfabricating SiC substrate. Appl. Phys. Lett. 101, 041605 (2012)ADSCrossRefGoogle Scholar
  139. 139.
    Rubio-Roy, M., Zaman, F., Hu, Y.K., Berger, C., Moseley, M.W., Meindl, J.D., de Heer, W.A.: Structured epitaxial graphene growth on SiC by selective graphitization using a patterned AlN cap. Appl. Phys. Lett. 96, 082112 (2010)ADSCrossRefGoogle Scholar
  140. 140.
    Puybaret, R., Hankinson, J., Palmer, J., Bouvier, C., Ougazzaden, A., Voss, P.L., Berger, C., de Heer, W.A.: Scalable control of graphene growth on 4H-SiC C-face using decomposing silicon nitride masks. J. Phys. D: Appl. Phys. 48, 152001 (2015)ADSCrossRefGoogle Scholar
  141. 141.
    Miller, D.L., Kubista, K.D., Rutter, G.M., Ruan, M., de Heer, W.A., First, P.N., Stroscio, J.A.: Structural analysis of multilayer graphene via atomic moireacute interferometry. Phys. Rev. B. 81, 223108 (2010)CrossRefGoogle Scholar
  142. 142.
    Franklin, R.E.: The structure of graphitic carbons. Acta Crystallogr. 4, 253–261 (1951)CrossRefGoogle Scholar
  143. 143.
    Cancado, L.G., Pimenta, M.A., Saito, R., Jorio, A., Ladeira, L.O., Grueneis, A., Souza, A.G., Dresselhaus, G., Dresselhaus, M.S.: Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B. 66, 035415 (2002)ADSCrossRefGoogle Scholar
  144. 144.
    Sprinkle, M., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Tinkey, H., Clark, M.C., Soukiassian, P., Martinotti, D., Hass, J., Conrad, E.H.: Multilayer epitaxial graphene grown on the SiC (000(1)over-bar) surface; structure and electronic properties. J. Phys. D: Appl. Phys. 43, 374006 (2010)CrossRefGoogle Scholar
  145. 145.
    Hicks, J., Sprinkle, M., Shepperd, K., Wang, F., Tejeda, A., Taleb-Ibrahimi, A., Bertran, F., Le Fevre, P., de Heer, W.A., Berger, C., Conrad, E.H.: Symmetry breaking in commensurate graphene rotational stacking: comparison of theory and experiment. Phys. Rev. B. 83, 205403 (2011)ADSCrossRefGoogle Scholar
  146. 146.
    Forbeaux, I., Themlin, J.M., Debever, J.M.: High-temperature graphitization of the 6H-SiC (000(1)over-bar) face. Surf. Sci. 442, 9–18 (1999)ADSCrossRefGoogle Scholar
  147. 147.
    L.I. Johansson, S. Watcharinyanon, A.A. Zakharov, T. Iakimov, R. Yakimova, C. Virojanadara, Stacking of adjacent graphene layers grown on C-face SiC (vol 84, 125405, 2011), Phys. Rev. B, 84 (2011) 129902ADSCrossRefGoogle Scholar
  148. 148.
    Nicotra, G., Deretzis, I., Scuderi, M., Spinella, C., Longo, P., Yakimova, R., Giannazzo, F., La Magna, A.: Interface disorder probed at the atomic scale for graphene grown on the C face of SiC. Phys. Rev. B. 91, 155411 (2015)ADSCrossRefGoogle Scholar
  149. 149.
    Wang, F., Shepperd, K., Hicks, J., Nevius, M.S., Tinkey, H., Tejeda, A., Taleb-Ibrahimi, A., Bertran, F., Le Fevre, P., Torrance, D.B., First, P.N., de Heer, W.A., Zakharov, A.A., Conrad, E.H.: Silicon intercalation into the graphene-SiC interface. Phys. Rev. B. 85, 165449 (2012)ADSCrossRefGoogle Scholar
  150. 150.
    Mathieu, C., Lalmi, B., Menteş, T.O., Pallecchi, E., Locatelli, A., Latil, S., Belkhou, R., Ouerghi, A.: Effect of oxygen adsorption on the local properties of epitaxial graphene on SiC (0001). Phys. Rev. B. 86, 035435 (2012)ADSCrossRefGoogle Scholar
  151. 151.
    de Laissardiere, G.T., Mayou, D., Magaud, L.: Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010)ADSCrossRefGoogle Scholar
  152. 152.
    dos Santos, J.M.B.L., Peres, N.M.R., Castro, A.H.: Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007)ADSCrossRefGoogle Scholar
  153. 153.
    Kindermann, M., First, P.N.: Effective theory of rotationally faulted multilayer graphene-the local limit. J. Phys. D: Appl. Phys. 45, 154005 (2012)ADSCrossRefGoogle Scholar
  154. 154.
    Mele, E.J.: Band symmetries and singularities in twisted multilayer graphene. Phys. Rev. B. 84, 235439 (2011)ADSCrossRefGoogle Scholar
  155. 155.
    Bistritzer, R., MacDonald, A.H.: Moiré bands in twisted double layer graphene. PNAS. 108, 12233–12237 (2011)ADSCrossRefGoogle Scholar
  156. 156.
    Brihuega, I., Mallet, P., Gonzalez-Herrero, H., de Laissardiere, G.T., Ugeda, M.M., Magaud, L., Gomez-Rodriguez, J.M., Yndurain, F., Veuillen, J.Y.: Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012)ADSCrossRefGoogle Scholar
  157. 157.
    Cherkez, V., de Laissardiere, G.T., Mallet, P., Veuillen, J.Y.: Van Hove singularities in doped twisted graphene bilayers studied by scanning tunneling spectroscopy. Phys. Rev. B. 91, 155428 (2015)ADSCrossRefGoogle Scholar
  158. 158.
    Kunc, J., Hu, Y., Palmer, J., Berger, C., de Heer, W.A.: A method to extract pure Raman spectrum of epitaxial graphene on SiC. Appl. Phys. Lett. 103, 201911 (2013)ADSCrossRefGoogle Scholar
  159. 159.
    Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)ADSCrossRefGoogle Scholar
  160. 160.
    Hu, Y.: Production and properties of epitaxial graphene on the carbon terminated face of hexagonal silicon carbide. In: School of Physics. PhD – Georgia Institute of Technology, Atlanta (2013)Google Scholar
  161. 161.
    Shivaraman, S., Chandrashekhar, M.V.S., Boeckl, J.J., Spencer, M.G.: Thickness estimation of epitaxial graphene on SiC using attenuation of substrate Raman intensity. J. Electron. Mater. 38, 725–730 (2009)ADSCrossRefGoogle Scholar
  162. 162.
    Hibino, H., Kageshima, H., Nagase, M.: Epitaxial few-layer graphene: towards single crystal growth. J. Phys. D: Appl. Phys. 43, 374005 (2010)CrossRefGoogle Scholar
  163. 163.
    Sprinkle, M., et.al.: Unpublished (2008)Google Scholar
  164. 164.
    Ni, Z.H., Chen, W., Fan, X.F., Kuo, J.L., Yu, T., Wee, A.T.S., Shen, Z.X.: Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B. 77, 115416 (2008)ADSCrossRefGoogle Scholar
  165. 165.
    Zabel, J., Nair, R.R., Ott, A., Georgiou, T., Geim, A.K., Novoselov, K.S., Casiraghi, C.: Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano Lett. 12, 617–621 (2012)ADSCrossRefGoogle Scholar
  166. 166.
    Mohiuddin, T.M.G., Lombardo, A., Nair, R.R., Bonetti, A., Savini, G., Jalil, R., Bonini, N., Basko, D.M., Galiotis, C., Marzari, N., Novoselov, K.S., Geim, A.K., Ferrari, A.C.: Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B. 79, 205433 (2009)ADSCrossRefGoogle Scholar
  167. 167.
    Fromm, F., Wehrfritz, P., Hundhausen, M., Seyller, T.: Looking behind the scenes: Raman spectroscopy of top-gated epitaxial graphene through the substrate. New J. Phys. 15, 113006 (2013)ADSCrossRefGoogle Scholar
  168. 168.
    Venezuela, P., Lazzeri, M., Mauri, F.: Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B. 84, 035433 (2011)ADSCrossRefGoogle Scholar
  169. 169.
    Röhrl, J., Hundhausen, M., Emtsev, K.V., Seyller, T., Graupner, R., Ley, L.: Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 92, 201918 (2008)ADSCrossRefGoogle Scholar
  170. 170.
    Ostler, M., Deretzis, I., Mammadov, S., Giannazzo, F., Nicotra, G., Spinella, C., Seyller, T., La Magna, A.: Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Phys. Rev. B. 88, 085408 (2013)ADSCrossRefGoogle Scholar
  171. 171.
    Ristein, J., Mammadov, S., Seyller, T.: Origin of doping in quasi-free-standing graphene on silicon carbide. Phys. Rev. Lett. 108, 246104 (2012)ADSCrossRefGoogle Scholar
  172. 172.
    Jabakhanji, B., Camara, N., Caboni, A., Consejo, C., Jouault, B., Godignon, P., Camassel, J.: Almost free standing graphene on SiC(000-1) and SiC(11-20). Mat. Sci. Forum. 711, 235–241 (2012)CrossRefGoogle Scholar
  173. 173.
    Hens, P., Jokubavicius, V., Liljedahl, R., Wagner, G., Yakimova, R., Wellmann, P., Syväjärvi, M.: Sublimation growth of thick freestanding 3C-SiC using CVD-templates on silicon as seeds. Mater. Lett. 67, 300–302 (2012)CrossRefGoogle Scholar
  174. 174.
    M. Suemitsu, S. Jiao, H. Fukidome, Y. Tateno, I. Makabe, T. Nakabayashi, Epitaxial graphene formation on 3C-SiC/Si thin films, J. Phys. D: Appl. Phys., 47 (2014).Google Scholar
  175. 175.
    Coletti, C., Emtsev, K.V., Zakharov, A.A., Ouisse, T., Chaussende, D., Starke, U.: Large area quasi-free standing monolayer graphene on 3C-SiC(111). Appl. Phys. Lett. 99, 081904 (2011)ADSCrossRefGoogle Scholar
  176. 176.
    Aristov, V.Y., Urbanik, G., Kummer, K., Vyalikh, D.V., Molodtsova, O.V., Preobrajenski, A.B., Zakharov, A.A., Hess, C., Hanke, T., Buchner, B., Vobornik, I., Fujii, J., Panaccione, G., Ossipyan, Y.A., Knupfer, M.: Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett. 10, 992–995 (2010)ADSCrossRefGoogle Scholar
  177. 177.
    Ouerghi, A., Ridene, M., Balan, A., Belkhou, R., Barbier, A., Gogneau, N., Portail, M., Michon, A., Latil, S., Jegou, P., Shukla, A.: Sharp interface in epitaxial graphene layers on 3C-SiC(100)/Si(100) wafers. Phys. Rev. B. 83, 205429 (2011)ADSCrossRefGoogle Scholar
  178. 178.
    Yazdi, G.R., Vasiliauskas, R., Iakimov, T., Zakharov, A., Syvajarvi, M., Yakimova, R.: Growth of large area monolayer graphene on 3C-SiC and a comparison with other SiC polytypes. Carbon. 57, 477–484 (2013)CrossRefGoogle Scholar
  179. 179.
    Mammadov, S., Ristein, J., Koch, R.J., Ostler, M., Raidel, C., Wanke, M., Vasiliauskas, R., Yakimova, R., Seyller, T.: Polarization doping of graphene on silicon carbide. 2D Mater. 1, 035003 (2014)CrossRefGoogle Scholar
  180. 180.
    Hens, P., Zakharov, A.A., Iakimov, T., Syvajarvi, M., Yakimova, R.: Large area buffer-free graphene on non-polar (001) cubic silicon carbide. Carbon. 80, 823–829 (2014)CrossRefGoogle Scholar
  181. 181.
    Han, M.Y., Brant, J.C., Kim, P.: Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010)ADSCrossRefGoogle Scholar
  182. 182.
    Jiao, L.Y., Zhang, L., Wang, X.R., Diankov, G., Dai, H.J.: Narrow graphene nanoribbons from carbon nanotubes. Nature. 458, 877–880 (2009)ADSCrossRefGoogle Scholar
  183. 183.
    Oostinga, J.B., Sacepe, B., Craciun, M.F., Morpurgo, A.F.: Magnetotransport through graphene nanoribbons. Phys. Rev. B. 81, 193408 (2010)ADSCrossRefGoogle Scholar
  184. 184.
    Chen, Z.H., Lin, Y.M., Rooks, M.J., Avouris, P.: Graphene nano-ribbon electronics. Phys. E. 40, 228–232 (2007)CrossRefGoogle Scholar
  185. 185.
    Todd, K., Chou, H.T., Amasha, S., Goldhaber-Gordon, D.: Quantum dot behavior in graphene nanoconstrictions. Nano Lett. 9, 416–421 (2009)ADSCrossRefGoogle Scholar
  186. 186.
    Molitor, F., Jacobsen, A., Stampfer, C., Guttinger, J., Ihn, T., Ensslin, K.: Transport gap in side-gated graphene constrictions. Phys. Rev. B. 79, 075426 (2009)ADSCrossRefGoogle Scholar
  187. 187.
    Cai, J.M., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X.L., Mullen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature. 466, 470–473 (2010)ADSCrossRefGoogle Scholar
  188. 188.
    Ruffieux, P., Cai, J.M., Plumb, N.C., Patthey, L., Prezzi, D., Ferretti, A., Molinari, E., Feng, X.L., Mullen, K., Pignedoli, C.A., Fasel, R.: Electronic structure of atomically precise graphene nanoribbons. ACS Nano. 6, 6930–6935 (2012)CrossRefGoogle Scholar
  189. 189.
    Wakabayashi, K., Fujita, M., Ajiki, H., Sigrist, M.: Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B. 59, 8271–8282 (1999)ADSCrossRefGoogle Scholar
  190. 190.
    Ruan, M., Hu, Y., Guo, Z., Dong, R., Palmer, J., Hankinson, J., Berger, C., de Heer, W.A.: Epitaxial graphene on silicon carbide: introduction to structured graphene. MRS Bull. 37, 1138–1147 (2012)CrossRefGoogle Scholar
  191. 191.
    Norimatsu, W., Kusunoki, M.: Formation process of graphene on SiC (0001). Phys. E. 42, 691–694 (2010)CrossRefGoogle Scholar
  192. 192.
    Baringhaus, J., Aprojanz, J., Wiegand, J., Laube, D., Halbauer, M., Hubner, J., Oestreich, M., Tegenkamp, C.: Growth and characterization of sidewall graphene nanoribbons. Appl. Phys. Lett. 106, 043109 (2015)ADSCrossRefGoogle Scholar
  193. 193.
    Baringhaus, J., Edler, F., Tegenkamp, C.: Edge-states in graphene nanoribbons: a combined spectroscopy and transport study. J. Phys.: Condens. Matter. 25, 392001 (2013)Google Scholar
  194. 194.
    Robinson, J., Weng, X.J., Trumbull, K., Cavalero, R., Wetherington, M., Frantz, E., LaBella, M., Hughes, Z., Fanton, M., Snyder, D.: Nucleation of epitaxial graphene on SiC(0001). ACS Nano. 4, 153–158 (2010)CrossRefGoogle Scholar
  195. 195.
    Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Nevius, M.S., Wang, F., Shepperd, K., Palmer, J., Bertran, F., Le Fevre, P., Kunc, J., de Heer, W.A., Berger, C., Conrad, E.H.: A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat. Phys. 9, 49–54 (2013)CrossRefGoogle Scholar
  196. 196.
    Giannazzo, F., Deretzis, I., Nicotra, G., Fisichella, G., Ramasse, Q.M., Spinella, C., Roccaforte, F., La Magna, A.: High resolution study of structural and electronic properties of epitaxial graphene grown on off-axis 4H-SiC (0001). J. Cryst. Growth. 393, 150–155 (2014)ADSCrossRefGoogle Scholar
  197. 197.
    Nicotra, G., Ramasse, Q.M., Deretzis, I., La Magna, A., Spinella, C., Giannazzo, F.: Delaminated graphene at silicon carbide Facets: atomic scale imaging and spectroscopy. ACS Nano. 7, 3045–3052 (2013)CrossRefGoogle Scholar
  198. 198.
    Nevius, M.S., Wang, F., Mathieu, C., Barrett, N., Sala, A., Mentes, T.O., Locatelli, A., Conrad, E.H.: The bottom-up growth of edge specific graphene nanoribbons. Nano Lett. 14, 6080–6086 (2014)ADSCrossRefGoogle Scholar
  199. 199.
    Nakajima, A., Yokoya, H., Furukawa, Y., Yonezu, H.: Step control of vicinal 6H-SiC(0001) surface by H-2 etching. J. Appl. Phys. 97, 104919 (2005)ADSCrossRefGoogle Scholar
  200. 200.
    Mathieu, C., Barrett, N., Rault, J., Mi, Y.Y., Zhang, B., de Heer, W.A., Berger, C., Conrad, E.H., Renault, O.: Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000(1)over-bar). Phys. Rev. B. 83, 235436 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institut NéelCNRS - University Grenoble - AlpesGrenobleFrance
  3. 3.TICNNTianjin UniversityTianjinChina

Personalised recommendations