Advertisement

Silicon carbide and epitaxial graphene on silicon carbide

  • C. BergerEmail author
  • E. H. Conrad
  • W. A. de Heer
Chapter
Part of the Condensed Matter book series (volume 45B)

Abstract

This chapter provides historical remarks on silicon carbide and their contribution in the growth of epitaxial graphene.

References

  1. 1.
    Badami, D.V.: Graphitization of alpha-silicon carbide. Nature. 193, 569–570 (1962)ADSCrossRefGoogle Scholar
  2. 2.
    Van Bommel, A.J., Crobeen, J.E., Van Tooren, A.: LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    Clark, D.T., Ramsay, E.P., Murphy, A.E., Smith, D.A., Thompson, R.F., Young, R.A.R., Cormack, J.D., Zhu, C., Finney, S., Fletcher, J.: High temperature silicon carbide CMOS integrated circuits. Mater. Sci. Forum. 679–680, 726–729 (2011)CrossRefGoogle Scholar
  4. 4.
    H.N. America, Aquadag® water based graphite coating/additive, 2015.Google Scholar
  5. 5.
    de Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., Conrad, E.H.: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. 108, 16900–16905 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Forbeaux, I., Themlin, J.M., Debever, J.M.: Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys. Rev. B. 58, 16396–16406 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Saddow, S.E., Anant Agarwal, A.: Advances in silicon carbide – processing and applications. Artech House, Boston (2004)Google Scholar
  8. 8.
    Bauer, A., Kräußlich, J., Dressler, L., Kuschnerus, P., Wolf, J., Goetz, K., Käckell, P., Furthmüller, J., Bechstedt, F.: High-precision determination of atomic positions in crystals: the case of 6H- and 4H-SiC. Phys. Rev. B. 57, 2647–2650 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Hass, J., de Heer, W.A., Conrad, E.H.: The growth and morphology of epitaxial multilayer graphene. J Phys-Condens Mat. 20, 323202 (2008)CrossRefGoogle Scholar
  10. 10.
    Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Rohrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Lilov, S.K.: Study of the equilibrium processes in the gas phase during silicon carbide sublimation. Mater. Sci. Eng. B. 21, 65–69 (1993)CrossRefGoogle Scholar
  12. 12.
    Robinson, J.A., Hollander, M., LaBella, M., Trumbull, K.A., Cavalero, R., Snyder, D.W.: epitaxial graphene transistors: enhancing performance via hydrogen intercalation. Nano Lett. 11, 3875–3880 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Yager, T., Lartsev, A., Yakimova, R., Lara-Avila, S., Kubatkin, S.: Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC. Carbon. 87, 409–414 (2015)CrossRefGoogle Scholar
  14. 14.
    Dimitrakopoulos, C., Lin, Y.M., Grill, A., Farmer, D.B., Freitag, M., Sun, Y.N., Han, S.J., Chen, Z.H., Jenkins, K.A., Zhu, Y., Liu, Z.H., McArdle, T.J., Ott, J.A., Wisnieff, R., Avouris, P.: Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. J Vac Sci Technol B. 28, 985–992 (2010)CrossRefGoogle Scholar
  15. 15.
    Yakimova, R., Iakimov, T., Yazdi, G.R., Bouhafs, C., Eriksson, J., Zakharov, A., Boosalis, A., Schubert, M., Darakchieva, V.: Morphological and electronic properties of epitaxial graphene on SiC. Physica B. 439, 54–59 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Tromp, R.M., Hannon, J.B.: Thermodynamics and kinetics of graphene growth on SiC(0001). Phys. Rev. Lett. 102, 106104 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Strupinski, W., Grodecki, K., Wysmolek, A., Stepniewski, R., Szkopek, T., Gaskell, P.E., Gruneis, A., Haberer, D., Bozek, R., Krupka, J., Baranowski, J.M.: Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett. 11, 1786–1791 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Moreau, E., Ferrer, F.J., Vignaud, D., Godey, S., Wallart, X.: Graphene growth by molecular beam epitaxy using a solid carbon source. Phys Status Solid A. 207, 300–303 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Michon, A., Vezian, S., Roudon, E., Lefebvre, D., Zielinski, M., Chassagne, T., Portail, M.: Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition. J. Appl. Phys. 113, 203501 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Lafont, F., Ribeiro-Palau, R., Kazazis, D., Michon, A., Couturaud, O., Consejo, C., Chassagne, T., Zielinski, M., Portail, M., Jouault, B., Schopfer, F., Poirier, W.: Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide. Nat. Commun. 6, 6806 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Friedhelm, B., Abderrezak, B.: Structure, energetics, and electronic states of III–V compound polytypes. J. Phys. Condens. Matter. 25, 273201 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institut NéelCNRS - University Grenoble - AlpesGrenobleFrance
  3. 3.TICNNTianjin UniversityTianjinChina

Personalised recommendations