Introduction to epigraphene and overview

  • C. BergerEmail author
  • E. H. Conrad
  • W. A. de Heer
Part of the Condensed Matter book series (volume 45B)


This chapter provides an overview of epigraphene and its suitableness in graphene electronics.



Zhigang Jiang, Ted Norris and Momchil Mihnev are thanked for a critical reading of the manuscript. C.B. and W.A.d.H. thank the AFOSR and NSF under grants No FA9550-13-1-0217 and 1506006, respectively. Additional support is provided by the Partner University Fund from the French Embassy. CB acknowledges partial funding from the EU Graphene Flagship program. E.H.C acknowledges support from NSF under grants No. DMR-1401193 and No. DMR-1005880.


  1. 1.
    Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., De Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B. 108, 19912–19916 (2004)CrossRefGoogle Scholar
  2. 2.
    de Heer, W.A., Berger, C., First, P.N.: Patterned thin films graphite devices and methods for making the same. US patent 7,015,142, (provisional Application No.60/477,997 filed June 12 2003, Issued March 21 2006)Google Scholar
  3. 3.
    Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science. 306, 666 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, Y.B., Small, J.P., Amori, M.E.S., Kim, P.: Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Boehm, H.P., Clauss, A., Hofmann, U., Fischer, G.O.: Dunnste Kohlenstoff-Folien. Z. Naturforsch. Pt. B. B17, 150–153 (1962)ADSCrossRefGoogle Scholar
  7. 7.
    Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and terminology of graphite-intercalation compounds. Carbon. 24, 241–245 (1986)CrossRefGoogle Scholar
  8. 8.
    Boehm, H.P.: Graphene-how a laboratory curiosity suddenly became extremely interesting. Angew. Chem. Int. Ed. 49, 9332–9335 (2010)CrossRefGoogle Scholar
  9. 9.
    Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Vizzini, S., Enriquez, H., Chiang, S., Soukiassian, P., Berger, C., de Heer, W.A., Lanzara, A., Conrad, E.H.: First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Ohta, T., Bostwick, A., McChesney, J.L., Seyller, T., Horn, K., Rotenberg, E.: Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Zhou, S.Y., Gweon, G.H., Graf, J., Fedorov, A.V., Spataru, C.D., Diehl, R.D., Kopelevich, Y., Lee, D.H., Louie, S.G., Lanzara, A.: First direct observation of Dirac fermions in graphite. Nat. Phys. 2, 595–599 (2006)CrossRefGoogle Scholar
  12. 12.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438, 197 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 438, 201 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Badami, D.V.: Graphitization of alpha-silicon carbide. Nature. 193, 569–570 (1962)ADSCrossRefGoogle Scholar
  15. 15.
    D.V. Badami, X-ray studies of graphite formed by decomposing sicilon carbide, Carbon 3 (1965) 53-57.CrossRefGoogle Scholar
  16. 16.
    Van Bommel, A.J., Crobeen, J.E., Van Tooren, A.: LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    Acheson, E.G.: Production of artificial crystalline carbonaceous materials : a method for making carborundum, an industrial abrasive called also silicon carbide. Carborundum Company, Pennsylvania (1893)Google Scholar
  18. 18.
    Zheludev, N.: The life and times of the LED – a 100-year history. Nat. Photonics. 1, 189–192 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    de Heer, W.A.: The invention of graphene electronics and the physics of epitaxial graphene on silicon carbide. Phys. Scr. T146, 014004 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Clark, D.T., Ramsay, E.P., Murphy, A.E., Smith, D.A., Thompson, R.F., Young, R.A.R., Cormack, J.D., Zhu, C., Finney, S., Fletcher, J.: High temperature silicon carbide CMOS integrated circuits. Mater. Sci. Forum. 679–680, 726–729 (2011)CrossRefGoogle Scholar
  21. 21.
    Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature. 490, 192–200 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Ferrari, A.C., Bonaccorso, F., Fal’ko, V., Novoselov, K.S., Roche, S., Boggild, P., Borini, S., Koppens, F.H.L., Palermo, V., Pugno, N., Garrido, J.A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhanen, T., Morpurgo, A., Coleman, J.N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G.F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A.N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G.M., Hee Hong, B., Ahn, J.-H., Min Kim, J., Zirath, H., van Wees, B.J., van der Zant, H., Occhipinti, L., Di Matteo, A., Kinloch, I.A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., Neil, S.R.T., Tannock, Q., Lofwander, T., Kinaret, J.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 7, 4598–4810 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and terminology of graphite-intercalation compounds (Iupac recommendations 1994). Pure Appl. Chem. 66, 1893–1901 (1994)CrossRefGoogle Scholar
  24. 24.
    Geim, A.K.: Graphene: status and prospects. Science. 324, 1530–1534 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Bianco, A., Cheng, H.M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C.R., Tascon, J.M.D., Zhang, J.: All in the graphene family – a recommended nomenclature for two-dimensional carbon materials. Carbon. 65, 1–6 (2013)CrossRefGoogle Scholar
  26. 26.
    Pauling, L.C.: The nature of the chemical bond: and the structure of molecules and crystals. An introduction to modern structural chemistry. Cornell University Press, New York (1948)Google Scholar
  27. 27.
    Kratschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R.: Solid C-60 – a new form of carbon. Nature. 347, 354–358 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    Ebbesen, T.W., Ajayan, P.M.: Large scale synthesis of carbon nanotubes. Nature. 358, 220–222 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    Girifalco, L.A., Lad, R.A.: Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J. Chem. Phys. 25, 693–697 (1956)ADSCrossRefGoogle Scholar
  30. 30.
    Paton, K.R., Varrla, E., Backes, C., Smith, R.J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O.M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O’Brien, S.E., McGuire, E.K., Sanchez, B.M., Duesberg, G.S., McEvoy, N., Pennycook, T.J., Downing, C., Crossley, A., Nicolosi, V., Coleman, J.N.: Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 3, 563–568 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    H.N. America, Aquadag® water based graphite coating/additive, 2015.Google Scholar
  33. 33.
    Gall, N.R., RutKov, E.V., Tontegode, A.Y.: Two dimensional graphite films on metals and their intercalation. Int. J. Mod. Phys. B. 11, 1865–1911 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    de Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., Conrad, E.H.: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. 108, 16900–16905 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Forbeaux, I., Themlin, J.M., Debever, J.M.: Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys. Rev. B. 58, 16396–16406 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    Xuekun, L., Minfeng, Y., Hui, H., Rodney, S.R.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology. 10, 269 (1999)CrossRefGoogle Scholar
  37. 37.
    Seo, J.W.T., Green, A.A., Antaris, A.L., Hersam, M.C.: High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. J. Phys. Chem. Lett. 2, 1004–1008 (2011)CrossRefGoogle Scholar
  38. 38.
    Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Nevius, M.S., Wang, F., Shepperd, K., Palmer, J., Bertran, F., Le Fevre, P., Kunc, J., de Heer, W.A., Berger, C., Conrad, E.H.: A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat. Phys. 9, 49–54 (2013)CrossRefGoogle Scholar
  39. 39.
    Koshino, M.: Stacking-dependent optical absorption in multilayer graphene. New J. Phys. 15, 015010 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Stolyarova, E., Rim, K.T., Ryu, S.M., Maultzsch, J., Kim, P., Brus, L.E., Heinz, T.F., Hybertsen, M.S., Flynn, G.W.: High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. U. S. A. 104, 9209–9212 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Knox, K.R., Wang, S.C., Morgante, A., Cvetko, D., Locatelli, A., Mentes, T.O., Nino, M.A., Kim, P., Osgood, R.M.: Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate. Phys. Rev. B. 78, 201408. R ArXiv: 0806.0355 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Knox, K.R., Locatelli, A., Yilmaz, M.B., Cvetko, D., Mentes, T.O., Nino, M.A., Kim, P., Morgante, A., Osgood, R.M.: Making angle-resolved photoemission measurements on corrugated monolayer crystals: suspended exfoliated single-crystal graphene. Phys. Rev. B. 84, 115401 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institut NéelCNRS - University Grenoble - AlpesGrenobleFrance
  3. 3.TICNNTianjin UniversityTianjinChina

Personalised recommendations