In-terminated Si(111)

  • N. EsserEmail author
  • E. Speiser
Part of the Condensed Matter book series (volume 45B)


In this chapter the surface structure and other surface related properties of In-terminated Si(111) are studied using Raman spectroscopy.

In-terminated Si(111) surfaces represent a prominent example of the atomic-scale 1D metallic nanowires. A monolayer of In on Si(111) allocates in In chains on the Si surfaces extending along the [1–10] direction. The In chains are a prototype example of a 1D metallic conductor at room temperature which undergoes a Peierls transition into an insulating state at low temperature [01H1]. A commonly accepted structural model has been established by experiment and theory for the room temperature phase of the In nanowire structure showing a (4 × 1) surface reconstruction. It consists of a double row of two In zigzag chains separated by a Si zigzag chain in between, resembling the π-bonded chains of the clean Si(111)(2 × 1) surface.

When the system is cooled to about 120 K, the In/Si(111) surface undergoes a phase transition into an (8 × 2) structure. Upon this phase transition, the In atoms within the double row of zigzag chains rearrange into a hexagon-like arrangement and the whole structure becomes insulating [09C]. The transition being related with a change of the 1D metallic (4 × 1) into an insulating state for the (8 × 2) structures has been associated with a first-order Peierls transition. The displacive transition between two distinct geometrical structures is associated with a charge density wave formation [10W].


  1. [01H1]
    Himpsel, F.J., Altmann, K.N., Bennewitz, R., Crain, J.N., Kirakosian, A., Lin, J.-L., McChesney, J.L.: J. Phys. Condens. Matter. 13, 11097 (2001)ADSCrossRefGoogle Scholar
  2. [03F]
    Fleischer, K., Chandola, S., Esser, N., Richter, W., McGilp, J.F.: Phys. Rev. B. 67, 235318 (2003)ADSCrossRefGoogle Scholar
  3. [07F]
    Fleischer, K., Chandola, S., Esser, N., Richter, W., McGilp, J.: Phys. Rev. B. 76, 205406 (2007)ADSCrossRefGoogle Scholar
  4. [07S]
    Stekolnikov, A.A., Bechstedt, F., Schmidt, W.G.: Phys. Rev. Lett. 98, 026105 (2007)ADSCrossRefGoogle Scholar
  5. [09C]
    Chandola, S., Hinrichs, K., Gensch, M., Esser, N., Wippermann, S., Schmidt, W.G., Bechstedt, F., Fleischer, K., McGilp, J.F.: Phys. Rev. Lett. 102, 226805 (2009)ADSCrossRefGoogle Scholar
  6. [10S]
    Speiser, E., Chandola, S., Hinrichs, K., Gensch, M., Cobet, C., Wippermann, S., Schmidt, W.G., Bechstedt, F., Richter, W., Fleischer, K., McGilp, J.F., Esser, N.: Phys. Status Solidi B. 247(8), 2033 (2010)ADSCrossRefGoogle Scholar
  7. [10W]
    Wippermann, S., Schmidt, W.G.: Phys. Rev. Lett. 105, 126102 (2010)ADSCrossRefGoogle Scholar
  8. [15S]
    Speiser, E., Hinrichs, K., Prete, P., Lovergine, N., Esser, N.: Phys. Status Solidi B. 252(1), 11 (2015)ADSCrossRefGoogle Scholar
  9. [16J]
    Jeckelmann, E., Sanna, S., Schmidt, W.G., Speiser, E., Esser, E.: Grand canomical Peierls transition in In/Si(111). Phys. Rev. B. 93, 241407 (R) (2016)ADSCrossRefGoogle Scholar
  10. [16L]
    Liebhaber, M., Halbig, B., Bass, U., Geurts, J., Neufeld S., Sanna, S. Schmidt, W.G., Spieser, E., Rathel, J., Chandola, S., Esser, N.: vibration eigenmodes of the Au-(5x2)/Si(111) surface by Raman spectroscopy and first-principle calculations. Phys. Rev. B. 94, 235304 (2016)ADSCrossRefGoogle Scholar
  11. [16S]
    Speiser, E., Esser, N., Wippermann, S., Schmidt, W.G.: Surface vibrational Raman modes of In:Si(111)(4x1) and (8x2) Nanowires. Phys. Rev. B. 94, 075417 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V.Interface Analytics DepartmentBerlinGermany

Personalised recommendations