Advertisement

Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

  • Sandro CorettiEmail author
  • Juan Garay
  • Martin Hirt
  • Vassilis Zikas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10032)

Abstract

Secure multi-party computation (MPC) allows several mutually distrustful parties to securely compute a joint function of their inputs and exists in two main variants: In synchronous MPC parties are connected by a synchronous network with a global clock, and protocols proceed in rounds with strong delivery guarantees, whereas asynchronous MPC protocols can be deployed even in networks that deliver messages in an arbitrary order and impose arbitrary delays on them.

The two models—synchronous and asynchronous—have to a large extent developed in parallel with results on both feasibility and asymptotic efficiency improvements in either track. The most notable gap in this parallel development is with respect to round complexity. In particular, although under standard assumptions on a synchronous communication network (availability of secure channels and broadcast), synchronous MPC protocols with (exact) constant rounds have been constructed, to the best of our knowledge, thus far no constant-round asynchronous MPC protocols based on standard assumptions are known, with the best protocols requiring a number of rounds that is linear in the multiplicative depth of the arithmetic circuit computing the desired function.

In this work we close this gap by providing the first constant-round asynchronous MPC protocol that is optimally resilient (i.e., it tolerates up to \(t<n/3\) corrupted parties), adaptively secure, and makes black-box use of a pseudo-random function. It works under the standard network assumptions for protocols in the asynchronous MPC setting, namely, a complete network of point-to-point (secure) asynchronous channels with eventual delivery and asynchronous Byzantine agreement (aka consensus). We provide formal definitions of these primitives and a proof of security in the Universal Composability framework.

References

  1. 1.
    Simon, J.: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing. ACM, Chicago (1988)Google Scholar
  2. 2.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: STOC, pp. 503–513. ACM (1990)Google Scholar
  3. 3.
    Beerliová-Trubíniová, Z., Hirt, M.: Simple and efficient perfectly-secure asynchronous MPC. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 376–392. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76900-2_23 CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: the ACM Conference on Computer and Communications Security, CCS 2012, Raleigh, NC, USA, October 16–18, 2012, pp. 784–796 (2012). http://doi.acm.org/10.1145/2382196.2382279
  5. 5.
    Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp. 52–61 (1993)Google Scholar
  6. 6.
    Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant time. Distrib. Comput. 16(4), 249–262 (2003). http://dx.doi.org/10.1007/s00446-002-0083-3 CrossRefGoogle Scholar
  7. 7.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC [1], pp. 1–10Google Scholar
  8. 8.
    Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience (extended abstract). In: PODC, pp. 183–192 (1994)Google Scholar
  9. 9.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-30576-7_18 CrossRefGoogle Scholar
  10. 10.
    Bracha, G.: An asynchronou [(n-1)/3]-resilient consensus protocol. In: Probert, R.L., Lynch, N.A., Santoro, N. (eds.) 3rd ACM PODC. pp. 154–162. ACM Press, Vancouver, British Columbia, Canada (Aug 27–29, 1984)Google Scholar
  11. 11.
    Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asynchronous byzantine agreement using cryptography. J. Cryptology 18(3), 219–246 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Canetti, R.: Studies in Secure Multiparty Computation and Applications. Ph.D. thesis, Weizmann Institute of Technology. http://www.wisdom.weizmann.ac.il/oded/PSX/ran-phd.pdf. 6 1995
  13. 13.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, Las Vegas, Nevada, USA (Oct 14–17, 2001)Google Scholar
  14. 14.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: 28th ACM STOC. pp. 639–648. ACM Press, Philadephia, Pennsylvania, USA (May 22–24, 1996)Google Scholar
  15. 15.
    Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In: 25th ACM STOC, pp. 42–51. ACM Press, San Diego, California, USA (May 16–18, 1993)Google Scholar
  16. 16.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC [1], pp. 11–19Google Scholar
  17. 17.
    Cohen, R.: Asynchronous secure multiparty computation in constant time. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 183–207. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49387-8_8 CrossRefGoogle Scholar
  18. 18.
    Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-party computation. Cryptology ePrint Archive, Report 2016/208 (2016). http://eprint.iacr.org/2016/208
  19. 19.
    Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005). doi: 10.1007/11535218_23 CrossRefGoogle Scholar
  20. 20.
    Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983). http://dx.doi.org/10.1137/0212045 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: 20th ACM STOC, pp. 148–161. ACM Press, Chicago, Illinois, USA (May 2–4, 1988)Google Scholar
  22. 22.
    Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Inf. Process. Lett. 14(4), 183–186 (1982). http://dx.doi.org/10.1016/0020-0190(82)90033-3 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. In: Fagin, R., Bernstein, P.A. (eds.) Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, March 21–23, 1983, Colony Square Hotel, Atlanta, Georgia, USA. pp. 1–7. ACM (1983). http://doi.acm.org/10.1145/588058.588060
  24. 24.
    Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014. pp. 495–504 (2014). http://doi.acm.org/10.1145/2591796.2591861
  25. 25.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)Google Scholar
  27. 27.
    Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party computation with optimal resilience. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005). doi: 10.1007/11426639_19 CrossRefGoogle Scholar
  28. 28.
    Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with quadratic communication. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 473–485. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70583-3_39 CrossRefGoogle Scholar
  29. 29.
    Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_24 CrossRefGoogle Scholar
  30. 30.
    Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agreement. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer, Heidelberg (2006). doi: 10.1007/11818175_27 CrossRefGoogle Scholar
  31. 31.
    Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36594-2_27 CrossRefGoogle Scholar
  32. 32.
    Pfitzmann, B., Waidner, M.: Unconditional Byzantine agreement for any number of faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 337–350. Springer, Heidelberg (1992). doi: 10.1007/3-540-55210-3_195 CrossRefGoogle Scholar
  33. 33.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: 21st ACM STOC. pp. 73–85. ACM Press, Seattle, Washington, USA (May 15–17, 1989)Google Scholar
  34. 34.
    Schneider, T., Zohner, M.: GMW vs. yao? efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39884-1_23 CrossRefGoogle Scholar
  35. 35.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164. IEEE (1982)Google Scholar
  37. 37.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167. IEEE (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Sandro Coretti
    • 1
    Email author
  • Juan Garay
    • 2
  • Martin Hirt
    • 3
  • Vassilis Zikas
    • 4
  1. 1.New York UniversityNew York CityUSA
  2. 2.Yahoo ResearchSunnyvaleUSA
  3. 3.Department of Computer ScienceETH ZurichZurichSwitzerland
  4. 4.Department of Computer ScienceRPITroyUSA

Personalised recommendations